小麦产量对中后期氮素胁迫的响应及品种间差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid–late growth stage
  • 作者:李朝苏 ; 吴晓丽 ; 汤永禄 ; 李俊 ; 马孝玲 ; 李式昭 ; 黄明波 ; 刘淼
  • 英文作者:LI Chao-Su;WU Xiao-Li;TANG Yong-Lu;LI Jun;MA Xiao-Ling;LI Shi-Zhao;HUANG Ming-Bo;LIU Miao;Crop Research Institute, Sichuan Academy of Agricultural Sciences/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province;Guanghan Productivity Promotion Center;
  • 关键词:人工合成小麦衍生品种 ; 氮胁迫 ; 产量 ; 光合特性 ; 氮素利用效率
  • 英文关键词:synthetic hexaploid wheat-derived cultivar;;nitrogen stress;;grain yield;;photosynthetic characteristics;;nitrogen utilization efficiency
  • 中文刊名:XBZW
  • 英文刊名:Acta Agronomica Sinica
  • 机构:四川省农业科学院作物研究所/作物生理生态及栽培四川省重点实验室;四川省广汉市生产力促进中心;
  • 出版日期:2019-04-23 15:25
  • 出版单位:作物学报
  • 年:2019
  • 期:v.45
  • 基金:国家自然科学基金项目(31571590);; 国家重点研发计划项目(2016YFD0300406);; 四川省农作物育种攻关项目(2016NYZ0051)资助~~
  • 语种:中文;
  • 页:XBZW201908014
  • 页数:10
  • CN:08
  • ISSN:11-1809/S
  • 分类号:128-137
摘要
生育中后期土壤供氮不足是导致小麦减产的重要原因之一。2015—2017年连续2个生长季,选择人工合成六倍体小麦衍生品种(synthetic hexaploid wheat-derived cultivar, SDC)和非人工合成小麦衍生品种(Non-synthetic hexaploid wheat-derived cultivar, NSC)各3个,设置2个施氮水平,研究其产量及相关生理参数对中后期氮素胁迫的响应。SDC包括川麦42、川麦104和绵麦367, NSC包括绵麦37、川农16和川麦30。2个施氮水平为正常施氮处理(Nn, 150kg N hm~(–2),底肥40%、拔节肥60%)和中后期氮胁迫处理(Ns, 60 kg N hm~(–2),全部作底肥)。结果表明,氮胁迫下,两类品种产量均值降幅接近(SDC 19.6%, NSC 20.4%),但正常供氮下SDC产量高于NSC (高14.4%),其氮胁迫下的产量也较高(高15.9%)。氮胁迫下, SDC的生物产量、单位面积粒数均高于NSC。开花期,两类品种在2个氮素水平下的叶面积指数(LAI)接近,但在灌浆中后期的降幅SDC小于NSC,花后22d,SDC在高、低施氮水平下的LAI较NSC分别高25.1%和16.0%。开花灌浆阶段, 2个施氮水平下SDC旗叶和倒二叶SPAD始终高于NSC,氮胁迫下二者的差距增大。两类品种的净光合速率(NPR)和群体光合速率(CAP)的差异也主要出现在灌浆中后期,氮胁迫下SDC以上2个参数较NSC均有优势。氮胁迫下,花后功能叶片的硝态氮、铵态氮、可溶性糖含量SDC也高于NSC。SDC较NSC有更高的氮素利用效率(NUtE),氮胁迫下,二者NUtE的差距增加。以上结果表明,低氮胁迫下SDC的生产力高于NSC,这与其较高的库容、较长叶片功能期有关。
        Soil nitrogen(N) deficiency at mid-late growth stage is one of the serious factors leading to lowered grain yield of wheat. The high yield potential of synthetic hexaploid wheat-derived cultivar(SDC) has been well documented, however, its responses to N deficiency at mid-late growth stage need further study. Six cultivars were grown under two fertilizer-N applied conditions over two consecutive growing seasons(2015~(–2)017). The cultivars consisted of three typical SDC(Chuanmai 42,Chuanmai 104 and Mianmai 367) and three non–synthetic hexaploid wheat–derived cultivar(NSC; Mianmai 37, Chuannong 16,and Chuanmai 30). Two N treatments consisted of normal N application(Nn, 150 kg hm~(–2), basal fertilizer 40%, top dressing 60%)and N stress(Ns, 60 kg hm~(–2), basal fertilizer only), and grain yield and associated physiological traits of these wheat cultivars in response to N deficiency at mid–late growth stage were studied. It turned out that the mean yield reduction of SDC(19.6%) and NSC(20.4%) was close under N stress, while SDC showed 14.4%(Nn) and 15.9%(Ns) advantages on yield than NSC at both N treatments. Besides, the biomass and grain number per unit area of SDC were higher than those of NSC. At anthesis, SDC and NSC had roughly the same leaf area index(LAI) values, whereas the LAI decline in SDC was less than that in NSC at mid–late grain–filling stage. Compared with NSC, the LAI of SDC was 25.1%(Nn) and 16.0%(Ns) higher at 22 days after anthesis, respectively. The SPAD values of flag and penultimate leaves in SDC were always higher than those in NSC at both N treatments during grain filling period, and the gap between them was increased under N stress. The differences in net photosynthetic rate(NPR) and canopy photosynthetic rate(CAP) between the two types of wheat also mainly appeared at mid–late grain–filling stage,and SDC still had advantages compared with NSC under Ns. In addition, the nitrate N, ammonium N and soluble sugar content in flag and penultimate leaves in SDC were higher than those in NSC under N stress condition. At last, SDC had higher N utilization efficiency(NUtE) than NSC, which difference between SDC and NSC was further increased by N stress. Overall, the above results indicate that the productivity of SDC is stronger than that of NSC at low N condition, which might be related to the higher sink capacity and longer leaf function period in SDC.
引文
[1]Z?rb C,Ludewig U,Hawkesford M J.Perspective on wheat yield and quality with reduced nitrogen supply.Trends Plant Sci,2018,23:1029-1037.
    [2]吴晓丽,李朝苏,汤永禄,刘于斌,李伯群,樊高琼,熊涛.氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响.应用生态学报,2017,28:1889-1898.Wu X L,Li C S,Tang Y L,Liu Y B,Li B Q,Fan G Q,Xiong T.Effect of nitrogen management modes on grain yield,nitrogen use efficiency and light use efficiency of wheat.China J Appl Ecol,2017,28:1889-1898(in Chinese with English abstract).
    [3]Tian Z W,Liu X X,Gu S L,Yu J H,Zhang L,Zhang W W,Jiang D,Cao W X,Dai T B.Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat.J Integr Agric,2018,17:2648-2661.
    [4]张士昌,史占良,李孟军,李亚青,底瑞耀,李雁鸣.长期定位氮胁迫对小麦碳氮代谢氮素利用及产量的影响.河南农业科学,2016,45(12):13-19.Zhang S C,Shi Z L,Li M J,Li Y Q,Di R Y,Li Y M.Effect of long-term nitrogen stress on carbon and nitrogen metabolism nitrogen use efficiency and yield of wheat.J Henan Agric Sci,2016,45(12):13-19(in Chinese with English abstract).
    [5]Papakosta D K,Gagianas A A.Nitrogen and dry matter accumulation,remobilization,and losses for Mediterranean wheat during grain filling.Agron J,1991,83:864-870.
    [6]Prystupa P,Savin R,Slafer G A.Grain number and its relationship with dry matter,N and P in the spikes at heading in response to N×P fertilization in barley.Field Crops Res,2004,90:245-254.
    [7]Madani A,Shirani-Rad A,Pazoki A,Nourmohammadi G,Zarghami R,Mokhtassi-Bidgol A.The impact of source or sink limitations on yield formation of winter wheat(Triticum aestivum L.)due to post-anthesis water and nitrogen deficiencies.Plant Soil Environ,2010,56:218-227.
    [8]杨慧勇,林凡云,陆琼娴,徐剑宏,史建荣.中国冬、春性小麦品种遗传多样性的微卫星标记分析.麦类作物学报,2007,27:555-559.Yang H Y,Lin F Y,Lu Q X,Xu J H,Shi J R.Genetic diversity of Chinese winter and spring wheat varieties detected by microsatellite markers.J Triticeae Crops,2007,27:555-559(in Chinese with English abstract).
    [9]Li A L,Liu D C,Yang W Y,Kishii M,Mao L.Synthetic hexaploid wheat:yesterday,today,and tomorrow.Engineering,2018,4:552-558.
    [10]Tang Y L,Rosemarne G M,Li C S,Wu X L,Yang W Y,Wu C.Physiological factors under pinning grain yield improvement of synthetic derived wheat in southeastern China.Crop Sci,2015,55:98-112.
    [11]李俊,魏会廷,胡晓蓉,李朝苏,汤永禄,刘登才,杨武云.川麦42中源于人工合成小麦的一个高产位点鉴定.作物学报,2011,37:255-262.Li J,Wei H T,Hu X R,Li C S,Tang Y L,Liu D C,Yang W Y.Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42.Acta Agron Sin,2011,37:255-262(in Chinese with English abstract).
    [12]汤永禄,李朝苏,吴晓丽,吴春,杨武云,黄钢,马孝玲.人工合成小麦衍生品种的物质积累、冠层结构及群体光合特性.中国农业科学,2014,47:844-855.Tang Y L,Li C S,Wu X L,Wu C,Yang W Y,Huang G,Ma X L.Accumulation of dry matter,canopy structure and photosynthesis of synthetic hexaploid wheat-derived high-yielding varieties grown in Sichuan Basin,China.Sci Agric Sin,2014,47:844-855(in Chinese with English abstract).
    [13]李朝苏,汤永禄,吴春,吴晓丽,黄钢,何刚,郭大明.施氮量对四川盆地小麦生长及灌浆的影响.植物营养与肥料学报,2015,21:873-883.Li C S,Tang Y L,Wu C,Wu X L,Huang G,He G,Guo D M.Effect of N rate on growth and grain filling of wheat in Sichuan Basin.Plant Nutr Fert Sci,2015,21:873-883(in Chinese with English abstract).
    [14]汤永禄,吴晓丽,吴元奇,李朝苏,吴春,郭大明.小麦籽粒灌浆参数的基因型差异及其稳定性分析.中国农业大学学报,2014,19(1):9-20.Tang Y L,Wu X L,Wu Y Q,Li C S,Wu C,Guo D M.Analysis of the genotypic variation and stability of grain filling parameters of wheat.J China Agric Univ,2014,19(1):9-20(in Chinese with English abstract).
    [15]李俊,魏会廷,杨粟洁,李朝苏,汤永禄,胡晓蓉,杨武云.川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应.作物学报,2009,35:2167-2173.Li J,Wei H T,Yang S J,Li C S,Tang Y L,Hu X R,Yang W Y.Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42.Acta Agron Sin,2009,35:2167-2173(in Chinese with English abstract).
    [16]Hawkesford M J,Araus J L,Park R,Calderini D,Miralles D,Shen T M,Zhang J P,Parry M A J.Prospects of doubling global wheat yields.Food Energy Security,2013,2:34-48.
    [17]Nehe A S,Misra S,Murchie E H,Chinnathambi K,Foulkes M J.Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars.Field Crops Res,2018,225:152-162.
    [18]剧成欣,周著彪,赵步洪,王志琴,杨建昌.不同氮敏感性粳稻品种的氮代谢与光合特性比较.作物学报,2018,44:405-413.Ju C X,Zhou Z B,Zhao B H,Wang Z Q,Yang J C.Comparison in nitrogen metabolism and photosynthetic characteristics between japonica rice varieties differing in nitrogen sensitivity.Acta Agron Sin,2018,44:405-413(in Chinese with English abstract).
    [19]韩胜芳,李淑文,文宏达,李雁鸣,肖凯.不同氮效率小麦品种的光合碳同化特性.植物营养与肥料学报,2006,12:797-804.Han S F,Li S W,Wen H D,Li Y M,Xiao K.Characterization of photosynthetic carbon assimilation in wheat varieties with different N efficiency.Plant Nutr Fert Sci,2006,12:797-804(in Chinese with English abstract).
    [20]郭文善,封超年,严六零,彭永欣,朱新开,宗爱国.小麦开花后源库关系分析.作物学报,1995,21:334-340.Guo W S,Feng C N,Yan L L,Peng Y X,Zhu X K,Zong A G.Analysis of source-sink relationship after anthesis in wheat.Acta Agron Sin,1995,21:334-340(in Chinese with English abstract).
    [21]曹蓓蓓,王仕稳,齐凌云,陈道钳,殷俐娜,邓西平.小麦苗期叶片碳氮平衡与低氮诱导的叶片衰老之间的关系.麦类作物学报,2017,37:673-679.Cao B B,Wang S W,Qi L Y,Chen D Q,Yin L N,Deng X P.Carbon/nitrogen balance involved in nitrogen deficiency induced leaf senescence in wheat seedling.J Triticeae Crops,2017,37:673-679(in Chinese with English abstract).
    [22]李春燕,陈思思,徐雯,李东升,顾骁,朱新开,郭文善,封超年.苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响.作物学报,2011,37:2293-2298.Li C Y,Chen S S,Xu W,Li D S,G X,Zhu X K,Guo W S,Feng C N.Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16.Acta Agron Sin,2011,37:2293-2298(in Chinese with English abstract).
    [23]龚月桦.持绿小麦的筛选及同化物的积累与转运.西北农林科技大学硕士论文,陕西杨凌,2008.pp 12-22.Gong Y H.The Filtration of Stay Green Wheat and Study on the Accumulation and Transportation of Assimilates in Stay Green Wheat.MS Thesis of Northwest A&F University,Yangling,Shaanxi,China,2008.pp 12-22(in Chinese with English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700