生物基呋喃衍生物在有机涂层中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of furan derivatives in organic coatings
  • 作者:彭晚军 ; 丁纪恒 ; 陈浩 ; 余海斌
  • 英文作者:PENG Wan-jun;DING Ji-heng;CHEN Hao;YU Hai-bin;Key Laboratory of Marine Materials and Related Technologies,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences;College of Materials Science and Engineering,Hunan University;School of Materials Science and Chemical Engineering,Ningbo University;
  • 关键词:呋喃类衍生物 ; 有机涂层 ; 自修复 ; 生物基
  • 英文关键词:furan derivatives;;organic coating;;self-healing;;bio-based
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:中国科学院宁波材料技术与工程研究所中国科学院海洋新材料与应用技术重点实验室;湖南大学材料科学与工程学院;宁波大学材料科学与化学工程学院;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:中科院旗舰人才引进(Y30226RA11)
  • 语种:中文;
  • 页:CLGC201901007
  • 页数:8
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:46-53
摘要
随着环境保护意识的增强,减少石油基材料的使用成为社会的共识,生物基呋喃类衍生物因其独特的性质引起了研究人员的极大兴趣,其在生物基涂层、自修复涂层和光固化涂层等领域有着极大的使用潜力,但在我国尚未有成熟的研究。基于此,本文对其在生物基涂层、自修复涂层和其他涂层的应用等方面进行了总结,介绍和分析了国内外呋喃类衍生物在有机涂层方面的最近研究成果,并指出目前呋喃类衍生物的大规模应用所存在的困难:生产成本的居高不下。最后对呋喃衍生物的其他应用,如呋喃甲基缩水甘油醚作为环氧涂层的活性稀释剂取代商业化的石油基活性稀释剂以及利用呋喃环的大π键非共价改性石墨烯再制备石墨烯/有机涂层复合材料等进行了分析和展望。
        With the increase in environmental awareness, reducing the use of petroleum-based materials has become a social consensus, so the researchers have been greatly interested in the bio-based furan derivatives which have a great potential for the applications in bio-based coatings, self-healing coatings and photocurable coatings because of their unique properties. However, there is no mature study in our country. Based on this, the application in bio-based coatings, self-repair coatings and other coatings was summarized in this paper, and then the recent research achievements of furan derivatives in organic coatings at home and abroad were introduced and analyzed, and the difficulties in the large-scale application of furan derivatives were pointed out as follows: the high production cost. Finally, other applications of furan derivatives were analysed and prospected, for example, utilizing furan methyl glycidyl ether as reactive diluent of epoxy coatings to replace commercial petroleum-based reactive diluent and non-covalent modifying graphene using the delocalized π bond of furan ring for preparing graphene/organic coatings composites.
引文
[1] MA S Q, LI T T, LIU X Q, et al. Research progress on bio-based thermosetting resins [J]. Polymer International, 2016, 65(2): 164-173.
    [2] CAI W Q, CHENG B, ZHANG G X, et al. Developing the green chemistry principles [J]. Progress in Chemistry, 2009, 21(10): 2001-2008.
    [3] 郑宁来. 2018年全球生物基材料和化学品产能将超740万t [J]. 石化技术与应用, 2015(3): 268-268. ZHENG N L. Global bio-based materials and chemicals capacity will exceed 7.4 million t in 2018 [J]. Petrochemical Technology & Application, 2015(3): 268-268.
    [4] 刁晓倩,翁云宣,黄志刚,等. 国内生物基材料产业发展现状[J]. 生物工程学报, 2016, 32(6): 715-725. DIAO X Q, WENG Y X, HUANG Z G, et al. Current status of bio-based materials industry in China [J]. Chinese Journal of Biotechnology, 2016, 32(6): 715-725.
    [5] DIAO L C, SU K M, LI Z H, et al. Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid) [J]. RSC Advances, 2016, 6(33): 27632-27639.
    [6] SOLODILOV V I, GORBATKINA Y A, KUPERMAN A M. The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics [J]. Mechanics of Composite Materials, 2003, 39(6): 493-502.
    [7] MANDAVI F, FORSYTH M, TAN M Y J. Techniques for testing and monitoring the cathodic disbondment of organic coatings: an overview of major obstacles and innovations [J]. Progress in Organic Coatings, 2017, 105: 163-175.
    [8] MOLLER V B, DAM-JOHANSEN K, FRANKAER S M, et al. Acid-resistant organic coatings for the chemical industry: a review [J]. Journal of Coatings Technology & Research, 2017, 14(2): 279-306.
    [9] CHEN Q, LIU J, THUNDAT T, et al. Spatially resolved organic coating on clay minerals in bitumen froth revealed by atomic force microscopy adhesion mapping [J]. Fuel, 2017, 191: 283-289.
    [10] CHANG C W, LU K T. Organic-inorganic hybrid linseed oil-based urethane oil wood coatings [J]. Journal of Applied Polymer Science, 2017, 134(10): 44562.
    [11] BANDEIRA R M, VAN DRUNEN J, TREMILIOSI-FILHO G, et al. Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel [J]. Progress in Organic Coatings, 2017, 106: 50-59.
    [12] ATTIA N F, MOUSSA M, SHETA A M F, et al. Synthesis of effective multifunctional textile based on silica nanoparticles [J]. Progress in Organic Coatings, 2017, 106: 41-49.
    [13] JEONG J H, HAN Y C, YANG J H, et al. Waterborne polyurethane modified with poly(ethylene glycol) macromer for waterproof breathable coating [J]. Progress in Organic Coatings, 2017, 103: 69-75.
    [14] CESUR S, KAHRAMAN T. Printing properties of polycaprolactone composite films [J]. Progress in Organic Coatings, 2016, 98: 10-13.
    [15] PURI R G, KHANNA A S. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel [J]. Progress in Organic Coatings, 2016, 92: 8-15.
    [16] THOMAS K A, NAIR S, RAJESWARI R, et al. Electrochemical behaviour of PANi/polyurethane antifouling coating in salt water studied by electrochemical impedance spectroscopy [J]. Progress in Organic Coatings, 2015, 89: 267-270.
    [17] 顾林,丁纪恒,余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28(5): 737-743. GU L, DING J H, YU H B. Research in Graphene-Based Anticorrosion Coatings [J]. Progress in Chemistry, 2016, 28(5): 737-743.
    [18] SHI X M, NGUYEN T A, SUO Z Y, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating [J]. Surface & Coatings Technology, 2009, 204(3): 237-245.
    [19] DUMAS L, BONNAUD L, OLIVIER M, et al. Arbutin-based benzoxazine: en route to an intrinsic water soluble biobased resin [J]. Green Chemistry, 2016, 18(18): 4954-4960.
    [20] RIVERO G, FASCE L A, CERE S M, et al. Furan resins as replacement of phenolic protective coatings: structural, mechanical and functional characterization [J]. Progress in Organic Coatings, 2014, 77(1): 247-256.
    [21] RIVERO G, VAZQUEZ A, MANFREDI L B. Synthesis and characterization of nanocomposites based on a furan resin [J]. Journal of Applied Polymer Science, 2010, 117(3): 1667-1673.
    [22] FAN C C, PANG C C, LIU X H, et al. Self-curing furan-based elastic thermosets derived from citric acid [J]. Green Chemistry, 2016, 18(23): 6320-6328.
    [23] HU F S, LA SCALA J J, SADLER J M, et al. Synthesis and characterization of thermosetting furan-based epoxy systems [J]. Macromolecules, 2014, 47(10): 3332-3342.
    [24] SOUSA A F, VILELA C, FONSECA A C, et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency [J]. Polymer Chemistry, 2015, 6(33): 5961-5983.
    [25] 周佳栋,曹飞,余作龙,等. 生物基聚酯单体2,5-呋喃二甲酸的制备及应用研究进展[J]. 高分子学报, 2016(1): 1-13. ZHOU J D, CAO F, YU Z L, et al. Research progress in preparation and application of bio-based 2,5-furandicarboxylic acid as polyester monomer [J].Acta Polymerica Sinica,2016(1):1-13.
    [26] HU F S, YADAV S K, LA SCALA J J, et al. Preparation and characterization of fully furan-based renewable thermosetting epoxy-amine systems [J]. Macromolecular Chemistry and Physics, 2015, 216(13): 1441-1446.
    [27] GUBBELS E, JASINSKA-WALC L, KONING C E. Synthesis and characterization of novel renewable polyesters based on 2,5-furandicarboxylic acid and 2,3-butanediol [J]. Journal of Polymer Science Part A, 2013, 51(4): 890-898.
    [28] WILSENS C H R M, WULLEMS N J M, GUBBELS E, et al. Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2,5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid [J]. Polymer Chemistry, 2015, 6(14): 2707-2716.
    [29] LIU S, GU L, ZHAO H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. Journal of Materials Science & Technology, 2016, 32(5): 425-431.
    [30] QIU S H, CHEN C, CUI M J, et al. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber [J]. Applied Surface Science, 2017, 407: 213-222.
    [31] CHO S H, WHITE S R, BRAUN P V. Self-healing polymer coatings [J]. Advanced Materials, 2009, 21(6): 645-649.
    [32] SCHELTJENS G, DIAZ M M, BRANCART J, et al. A self-healing polymer network based on reversible covalent bonding [J]. Reactive & Functional Polymers, 2013, 73(2): 413-420.
    [33] YIN X Y, LIU Z L, WANG D A, et al. Bioinspired self-healing organic materials: chemical mechanisms and fabrications [J]. Journal of Bionic Engineering, 2015, 12(1): 1-16.
    [34] ELSCHNER T, OBST F, STANA-KLEINSCHEK K, et al. Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran [J]. Carbohydrate Polymers, 2017, 161: 1-9.
    [35] CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002, 295(5560): 1698-1702.
    [36] KARAMI Z, ZOHURIAAN-MEHR M J, ROSTAMI A. Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart [J]. Journal of CO_2 Utilization, 2017, 18: 294-302.
    [37] POSTIGLIONE G, TURRI S, LEVI M. Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels-Alder reaction [J]. Progress in Organic Coatings, 2015, 78: 526-531.
    [38] FU G H, YUAN L, LIANG G Z, et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers [J]. Journal of Materials Chemistry A, 2016, 4(11): 4232-4241.
    [39] BARTHEL M J, RUDOLPH T, TEICHLER A, et al. Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films [J]. Advanced Functional Materials, 2013, 23(39): 4921-4932.
    [40] ARUNBABU D, NOH S M, NAM J H, et al. Thermoreversible self-healing networks based on a tunable polymethacrylate crossslinker having pendant maleimide groups [J]. Macromolecular Chemistry and Physics, 2016, 217(19): 2191-2198.
    [41] 马宇,任亮,冯启,等. 单组分聚脲材料在寒冷地区某大坝溢流面防护中的应用[J]. 中国水利水电科学研究院学报, 2017, 15(1): 49-53. MA Y, REN L, FENG Q, et al. Application of one component polyurea material in the overflow surface for the dam protection in cold regions [J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(1): 49-53.
    [42] 余建平. 暴露型单组分聚氨酯(脲)防水涂膜及其应用[J]. 中国建筑防水, 2010(22): 25-28. YU J P. Exposed one component polyurethane waterproofing coating and its application [J]. China Building Waterproofing, 2010(22): 25-28.
    [43] KOTTERITZSCH J, STUMPF S, HOEPPENER S, et al. One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions [J]. Macromolecular Chemistry and Physics, 2013, 214(14): 1636-1649.
    [44] PRATAMA P A, PETERSON A M, PALMESE G R. Diffusion and reaction phenomena in solution-based healing of polymer coatings using the Diels-Alder reaction [J]. Macromolecular Chemistry and Physics, 2012, 213(2): 173-181.
    [45] PRATAMA P A, PETERSON A M, PALMESE G R. The role of maleimide structure in the healing of furan-functionalized epoxy amine thermosets [J]. Polymer Chemistry, 2013, 4(18): 5000-5006.
    [46] PRATAMA P A, SHARIFI M, PETERSON A M, et al. Room temperature self-healing thermoset based on the Diels-Alder reaction [J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12425-12431.
    [47] FUHRMANN A, GOSTL R, WENDT R, et al. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light [J]. Nature Communications, 2016, 7: 13623.
    [48] FREDRICH S, GOSTL R, HERDER M, et al. Switching diarylethenes reliably in both directions with visible light [J]. Angewandte Chemie-International Edition, 2016, 55(3): 1208-1212.
    [49] JEONG J, KIM B, SHIN S, et al. Synthesis and photo-polymerization of bio-based furanic compounds functionalized by 2-hydroxypropyl methacrylate group(s) [J]. Journal of Applied Polymer Science, 2013, 127(4): 2483-2489.
    [50] 龙国宁,黄小忠,陈金. 碳纤维表面h-BN耐高温涂层的制备及表征[J]. 表面技术, 2015,44(9): 84-88. LONG G N, HUANG X Z, CHEN J. Preparation and characterization of h-BN high-temperature resistant coating on the surface of carbon fibers [J]. Surface Technology, 2015,44(9): 84-88.
    [51] MILITZER C, KNOHL S, DZHAGAN V, et al. Deposition of an organic-inorganic hybrid material onto carbon fibers via the introduction of furfuryl alcohol into the atomic layer deposition process of titania and subsequent pyrolysis [J]. Journal of Vacuum Science & Technology A, 2017, 35(1): 01B107.
    [52] 黄坤,王石发,万厉. 糠醇缩水甘油醚稀释的环氧体系的性能研究[J]. 热固性树脂, 2009, 24(5): 1-5. HUANG K, WANG S F, WAN L. Study on properties of epoxy curing system with furfuryl glycidyl ether as diluent [J]. Thermosetting Resin, 2009, 24(5): 1-5.
    [53] 彭晚军,丁纪恒,夏伟军,等. 生物基呋喃甲基缩水甘油醚对环氧树脂固化物性能的影响[J]. 塑料工业, 2017, 45(8): 23-26. PENG W J, DING J H, XIA W J, et al. Effect of bio-based furfuryl glycidyl ether on properties of epoxy resin curing [J]. China Plastics Industry, 2017, 45(8): 23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700