非编码RNA对冠心病发生发展影响的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Non-Coding RNA in Development of Coronary Heart Disease
  • 作者:李平 ; 庞智 ; 朱剑云 ; 孙琛琛 ; 孙康云
  • 英文作者:LI Ping;PANG Zhi;ZHU Jianyun;SUN Chenchen;SUN Kangyun;Department of Cardiology,Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Institute of Digestive Diseases and Nutrition;
  • 关键词:冠心病 ; 非编码RNA ; 生物标志物
  • 英文关键词:Coronary heart disease;;Non-coding RNA;;Biomarker
  • 中文刊名:YXZS
  • 英文刊名:Medical Recapitulate
  • 机构:南京医科大学附属苏州医院心血管内科苏州市消化系疾病与营养研究所;
  • 出版日期:2019-04-22 14:37
  • 出版单位:医学综述
  • 年:2019
  • 期:v.25
  • 基金:苏州市卫生和计划生育委员会临床重点病种诊疗技术专项(LCZX201610)
  • 语种:中文;
  • 页:YXZS201908004
  • 页数:6
  • CN:08
  • ISSN:11-3553/R
  • 分类号:24-29
摘要
非编码RNA(ncRNA)与冠心病的发生、发展关系密切。尤其是在心血管平滑肌细胞的增殖、细胞凋亡、脂质代谢以及相关炎症反应方面,微RNA(miRNA)、长链非编码RNA(lncRNA)、环状RNA(circRNA)都参与冠心病发生过程,并且这3种ncRNA还能相互协作共同影响冠心病的发生与发展。例如miR-21参与冠心病的炎症反应,而过表达lncRNA MEG3能够抑制miR-21的表达进而促进过氧化物酶活化、脂肪分化、血管生成,参与冠心病患者疾病的发生。同时circRNA可以充当miRNA海绵吸附体来调节基因表达或直接调控基因的剪接和转录。
        Non-coding RNAs( ncRNAs) have close relationship with the occurrence and development of coronary heart disease. MicroRNA( miRNA),long non-coding RNA( lncRNA),circular RNA( circRNA) are involved in coronary heart disease process,especially in vascular smooth muscle cell proliferation,apoptosis,lipid metabolism,and inflammation. These three kinds of ncRNAs also can collaborate to affect the occurrence and development of coronary heart disease. For example,miR-21 is involved in the inflammatory response of coronary heart disease,and overexpressed lncRNA MEG3 can inhibit the expression of miR-21 and then promote the activation of peroxidases,fat differentiation,and angiogenesis in coronary heart disease. In the meantime,circRNA can act as a miRNA sponge to regulate gene expression or regulate gene splicing and transcription directly.
引文
[1]Glass CK,Witztum JL.Atherosclerosis.the road ahead[J].Cell,2001,104(4):503-516.
    [2]高润霖.冠心病疾病负担-中国出路[J].中国循环杂志,2017,32(1):1-4.
    [3]Djebali S,Davis CA,Merkel A,et al.Landscape of transcription in human cells[J].Nature,2012,489(7414):101-108.
    [4]Birney E,Stamatoyannopoulos JA,Dutta A,et al.Identification and analysis of functional elements in 1%of the human genome by the ENCODE pilot project[J].Nature,2007,447(7146):799-816.
    [5]Goedeke L,Aranda JF,Fernández-Hernando C.microRNA regulation of lipoprotein metabolism[J].Curr Opin Lipidol,2014,25(4):282-288.
    [6]Dangwal S,Thum T.microRNA therapeutics in cardiovascular disease models[J].Annu Re Pharmacol Toxicol,2014,54:185-203.
    [7]Creemers EE,Tijsen AJ,Pinto YM.Circulating microRNAs:Novel biomarkers and extracellular communicators in cardiovascular disease?[J].Circ Res,2012,110(3):483-495.
    [8]Gilad S,Meiri E,Yogev Y,et al.Serum MicroRNAs are promising novel biomarkers[J].PLo S One,2008,3(9):e3148.
    [9]Iliopoulos D,Drosatos K,Hiyama Y,et al.MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism[J].J Lipid Res,2010,51(6):1513-1523.
    [10]Liu H,Yang N,Fei Z,et al.Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease[J].Biomed Rep,2016,5(3):332-336.
    [11]Ng R,Wu H,Xiao H,et al.Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia[J].Hepatology,2014,60(2):554-564.
    [12]Gerin I,Clerbaux LA,Haumont O,et al.Expression of miR-33from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation[J].J Biol Chem,2010,285(44):33652-33661.
    [13]Wilfred BR,Wang WX,Nelson PT.Energizing miRNA research:A review of the role of miRNAs in lipid metabolism,with a prediction that miR-103/107 regulates human metabolic pathways[J].Mol Genet Metab,2007,91(3):209-217.
    [14]Dong J,Liang YZ,Zhang J,et al.Potential role of lipometabolismrelated MicroRNAs in peripheral blood mononuclear cells as biomarkers for coronary artery disease[J].J Atheroscler Thromb,2017,24(4):430-441.
    [15]de Gonzalo-Calvo D,Cenarro A,Garlaschelli K,et al.Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease[J].J Mol Cell Cardiol,2017,106:55-67.
    [16]Wang M,Ji Y,Cai S,et al.MiR-206 suppresses the progression of coronary artery disease by modulating vascular endothelial growth factor(VEGF)expression[J].Med Sci Monit,2016,22:5011-5020.
    [17]Wang S,Aurora BA,Johnson B,et al.An Endothelial-specific microRNA governs vascular integrity and angiogenesis[J].Dev cell,2008,15(2):261-271.
    [18]Wang JN,Yan YY,Guo ZY,et al.Negative association of circulating microRNA-126 with high-sensitive C-reactive protein and vascular cell adhesion molecule-1 in patients with coronary artery disease following percutaneous coronary intervention[J].Chin med J,2016,129(23):2786-2791.
    [19]Lai Z,Lin P,Weng X,et al.MicroRNA-574-5p promotes cell growth of vascular smooth muscle cells in the progression of coronary artery disease[J].Biomed Pharmacother,2018,97:162-167.
    [20]Li M,Liu Q,Lei J,et al.miR-362-3p inhibits the proliferation and migration of vascular smooth muscle cells in atherosclerosis by targeting ADAMTS1[J].Biochem Biophys Res Commun,2017,493(1):270-276.
    [21]Zhang R,Sui L,Hong X,et al.miR-448 promotes vascular smooth muscle cell proliferation and migration in through directly targeting MEF2C[J].Environ Sci Pollut Res lnt,2017,24(28):22294-22300.
    [22]Chang TY,Tsai WC,Huang TS,et al.Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and-146b in cardiovascular disease patients[J].PLo S One,2017,12(7):e0181562.
    [23]Hou S,Fang M,Zhu Q,et al.MicroRNA-939 governs vascular integrity and angiogenesis through targetingγ-catenin in endothelial cells[J].Biochem Biophys Res Commun,2017,484(1):27-33.
    [24]De Rosa R,De Rosa S,Leistner D,et al.Transcoronary concentration gradient of microRNA-133a and outcome in patients with coronary artery disease[J].Am J Cardiol,2017,120(1):15-24.
    [25]Kim JS,Pak K,Goh TS,et al.Prognostic value of MicroRNAs in coronary artery diseases:A meta-analysis[J].Yonsei Med J,2018,59(4):495-500.
    [26]Zhang YH,He K,Shi G.Effects of microRNA-499 on the inflammatory damage of endothelial cells during coronary artery disease via the targeting of PDCD4 through the NF-κB/TNF-αsignaling pathway[J].Cell Physiol Biochem,2017,44(1):110-124.
    [27]Wang D,Wang Y,Ma J,et al.MicroRNA-20a participates in the aerobic exercise-based prevention of coronary artery disease by targeting PTEN[J].Biomed Pharmacother,2017,95:756-763.
    [28]Hu J,Zeng L,Huang J,et al.miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats[J].Brain Res,2015,1608:191-202.
    [29]Chen B,Luo L,Zhu W,et al.miR-22 contributes to the pathogenesis of patients with coronary artery disease by targeting MCP-1:An observational study[J].Medicine,2016,95(33):e4418.
    [30]Darabi F,Aghaei M,Movahedian A,et al.Association of serum microRNA-21 levels with Visfatin,inflammation,and acute coronary syndromes[J].Heart Vessels,2017,32(5):549-557.
    [31]Moradi N,Fadaei R,Ahmadi R,et al.Lower Expression of miR-10a in coronary artery disease and its association with Pro/antiinflammatory cytokines[J].Clin Lab,2018,64(5):847-854.
    [32]Satoh M,Nasu T,Takahashi Y,et al.Expression of miR-23a induces telomere shortening and is associated with poor clinical outcomes in patients with coronary artery disease[J].Clin Sci,2017,131(15):2007-2017.
    [33]Pang KC,Frith MC,Mattick JS.Rapid evolution of noncoding RNAs:Lack of conservation does not mean lack of function[J].Trends Genet,2006,22(1):1-5.
    [34]Meseure D,Drak Alsibai K,Nicolas A,et al.Long noncoding RNAs as new architects in cancer epigenetics,prognostic biomarkers,and potential therapeutic targets[J].Biomed Res Int,2015,2015:320214.
    [35]Yang F,Xue X,Bi J,et al.Long noncoding RNA CCAT1,which could be activated by c-Myc,promotes the progression of gastric carcinoma[J].J Cancer Res Clin Oncol,2013,139(3):437-445.
    [36]Yuan JH,Yang F,Wang F,et al.A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma[J].Cancer Cell,2014,25(5):666-681.
    [37]Kumar MM,Goyal R.LncRNA as a therapeutic target for angiogenesis[J].Curr Top Med Chem,2017,17(15):1750-1757.
    [38]Wu G,Cai J,Han Y,et al.LincRNA-p21 regulates neointima formation,vascular smooth muscle cell proliferation,apoptosis and atherosclerosis by enhancing p53 activity[J].Circulation,2014,130(17):1452-1465.
    [39]Tang SS,Cheng J,Cai MY,et al.Association oflincRNA-p21 haplotype with coronary artery disease in a Chinese Han population[J].Dis Markers,2016,2016:9109743.
    [40]Cai Y,Yang Y,Chen X,et al.Circulating lncRNAOTTHUMT00000387022 from monocytes as a novel biomarker for coronary artery disease[J].Cardiovasc Res,2016,112(3):714-724.
    [41]Gao W,Zhu M,Wang H,et al.Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population[J].Mutat Res,2015,772:15-22.
    [42]Yu H,Xu H,Cheng J,et al.Downregulation of long non-coding RNA H19 promotes P19CL6 cells proliferation and inhibits apoptosis during late-stage cardiac differentiation via miR-19b-modulated Sox6[J].Cell Biosci,2016,6:58.
    [43]Zhang Z,Gao W,Long QQ,et al.Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population[J].Sci Rep,2017,7(1):7491.
    [44]Wang G,Li Y,Peng Y,et al.Association of polymorphisms in MALAT1,with risk of coronary atherosclerotic heart disease in a Chinese population[J].Lipids Health Dis,2018,17(1):75.
    [45]Wu Z,He Y,Li D,et al.Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21[J].Am J Transl Res,2017,9(7):3326-3335.
    [46]Grote P,Wittler L,Hendrix D,et al.The tissue-specific lncRNAFendrr is an essential regulator of heart and body wall development in the mouse[J].Dev cell,2013,24(2):206-214.
    [47]ekin N,zcan A,G9ksel S,et al.Decreased FENDRR and LincRNA-p21 expression in atherosclerotic plaque[J].Anatol JCardiol,2018,19(2):131-136.
    [48]Klattenhoff CA,Scheuermann JC,Surface LE,et al.Braveheart,a long noncoding RNA required for cardiovascular lineage commitment[J].Cell,2013,152(3):570-583.
    [49]Cai Y,Yang Y,Chen X,et al.Circulating"LncPPARδ"from monocytes as a novel biomarker for coronary artery diseases[J].Medicine,2016,95(6):e2360.
    [50]Yari M,Bitarafan S,Broumand MA,et al.Association between long noncoding RNA ANRIL expression variants and susceptibility to coronary artery disease[J].Int J Mol Cell Med,2018,7(1):1-7.
    [51]Xu B,Fang Z,He S,et al.ANRIL polymorphism rs4977574 is associated with increased risk of coronary artery disease in Asian populations:A meta-analysis of 12,005 subjects[J].Medicine,2018,97(39):e12641.
    [52]Yu D,Tang C,Liu P,et al.Targeting lncRNAs for cardiovascular therapeutics in coronary artery disease[J].Curr Pharm Des,2018[2018-08-01].https://europepmc.org/abstract/MED/29308735[published online abead of print Jan.8,2018].
    [53]Jes-Niels B,Nicolas J,Heumüller AW,et al.Identification and characterization of hypoxia-regulated endothelial circular RNA[J].Circ Res,2015,117(10):884-890.
    [54]Salzman J.Circular RNA expression:Its potential regulation and function[J].Trends Genet,2016,32(5):309-316.
    [55]Salzman J,Chen RE,Olsen MN,et al.Cell-type specific features of circular RNA expression[J].PLo S Genet,2013,9(9):e1003777.
    [56]Zhang Y,Zhang XO,Chen T,et al.Circular intronic long noncoding RNAs[J].Mol Cell,2013,51(6):792-806.
    [57]Lyu D,Huang S.The emerging role and clinical implication of human exonic circular RNA[J].RNA Biol,2017,14(8):1000-1006.
    [58]Chen J,Cui L,Yuan J,et al.Circular RNA WDR77 target FGF-2to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124[J].Biochem Biophys Res Commun,2017,494(1/2):126-132.
    [59]Li CY,Ma L,Yu B.Circular RNA hsa_circ_0003575 regulates ox LDL induced vascular endothelial cells proliferation and angiogenesis[J].Biomed Pharmacother,2017,95:1514-1519.
    [60]Pan RY,Liu P,Zhou HT,et al.Circular RNAs promote TRPM3expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients[J].Oncotarget,2017,8(36):60280-60290.
    [61]Zhao Z,Li X,Gao C,et al.Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J].Sci Rep,2017,7:39918.
    [62]Li X,Zhao Z,Jian D,et al.Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus[J].Diab Vasc Dis Res,2017,14(6):510-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700