河蟹生态养殖池塘不同水层水质变化的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the change of water quality in different layers in the crab eco-culture ponds
  • 作者:吴凯 ; 马旭洲 ; 王友成 ; 郎月林 ; 李星星
  • 英文作者:WU Kai;MA Xu-zhou;WANG You-cheng;LANG Yue-lin;LI Xing-xing;Key Laboratory of Freshwater Fishery Germplasm Resources,Ministry of Aquaculture,Shanghai Ocean University;Shanghai Engineering Research Center of Aquaculture;Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding;Shanghai Yuyue Aquaculture Professional Cooperatives;Zunyi Aquaculture Station;
  • 关键词:河蟹 ; 生态养殖 ; 不同水层 ; 水质因子 ; 昼夜变化
  • 英文关键词:Crab;;Eco-culture;;Different water layer;;Water quality factor;;Diurnal variation
  • 中文刊名:SHLB
  • 英文刊名:Acta Agriculturae Shanghai
  • 机构:上海海洋大学农业部淡水水产种质资源重点实验室;上海市水产养殖工程技术研究中心;水产动物遗传育种中心上海市协同创新中心;上海鱼跃水产专业合作社;遵义市水产站;
  • 出版日期:2018-01-30
  • 出版单位:上海农业学报
  • 年:2018
  • 期:v.34
  • 基金:上海市中华绒鳌蟹产业技术体系(D8003-10-0208);; 国家星火计划项目(2011GA680001);; 欧盟FP7亚欧水产平台(245020);; 水产动物遗传育种中心上海市协同创新中心资助项目(ZF1206)
  • 语种:中文;
  • 页:SHLB201801009
  • 页数:6
  • CN:01
  • ISSN:31-1405/S
  • 分类号:51-56
摘要
为了探究河蟹生态养殖池塘不同水层水质因子昼夜变化规律,于2014年8月选择3个连续的晴天天气对上海松江泖港地区3个河蟹生态养殖池塘上层、中层和下层的水质因子进行昼夜监测。结果表明:水质因子均存在昼夜变化和分层现象,3个水层的水温、pH、COD_(Mn)浓度和PO_4~(3-)-P浓度昼夜变化差异不显著;上层和下层水体的DO浓度和NO_2~--N浓度差异显著;3个水层的NH_4~+-N浓度和NO_3~--N浓度均表现出显著差异。一天中,水温、DO浓度、pH和NO_3~--N浓度在5:00最低,NH_4~+-N、NO_2~--N浓度在5:00最高,COD_(Mn)浓度在1:00最高,PO_4~(3-)-P浓度较稳定;NH_4~+-N浓度和DO浓度的昼夜变化表现出负相关关系。
        In order to explore the diurnal variation of water quality factors in different layers of crab ecoculture ponds,the water quality factors in upper,middle and lower layers of 3 ponds in Maogang area,Songjiang,Shanghai were monitored day and night for 3 consecutive sunny days in August 2014. The results showed that there were diurnal variation and stratification in all the water quality factors. There were no significant differences in the diurnal variations of water temperature,pH,CODMn concentration and PO_4~(3-)-P concentration in the 3 water layers. The difference of DO concentration and NO_2~--N concentration in the upper and lower water layers was significant. The concentration of NH_4~+-N and NO_3~--N in the 3 water layers were significantly different. In a day,the water temperature,DO concentration, pH and NO_3~-N concentration were lowest at 5 :00,NH_4~+-N and NO_2~--N concentrations were the highest at 5 :00,COD_(Mn) concentration was the highest at 1 :00,PO_4~(3-)-P concentration was relatively stable. There was a negative correlation between the diurnal variation of NH_4~+-N concentration and DO concentration.
引文
[1]王武,王成辉,马旭洲.河蟹生态养殖[M].2版.北京:中国农业出版社,2013.
    [2]陈家长,胡庚东,瞿建宏,等.太湖流域池塘河蟹养殖向太湖排放氮磷的研究[J].农村生态环境,2005,21(1):21-23.
    [3]吴庆龙,陈开宁,胡耀辉,等.东太湖河蟹网围养殖的环境效应[J].农业环境保护,2001,20(6):432-434.
    [4]戴恒鑫,马旭洲,李应森,等.湖南大通湖河蟹池塘生态养殖模式对水质净化的试验研究[J].安全与环境学报,2012,12(5):89-94.
    [5]王高龙,王友成,马旭洲,等.上海松江泖港地区蟹种养殖对水质的影响[J].安全与环境学报,2015,15(3):317-321.
    [6]吴伟,范立民,瞿建宏,等.池塘河蟹生态养殖对水体环境的影响[J].安全与环境学报,2006,6(4):50-54.
    [7]吴伟,吴婷婷,何杰,等.东太湖河蟹围网生态养殖对水环境的影响[J].中国生态农业学报,2007,15(2):140-146.
    [8]戴恒鑫,李应森,马旭洲,等.河蟹生态养殖池塘溶解氧分布变化的研究[J].上海海洋大学学报,2013,22(1):66-73.
    [9]MILADINOVIC N,WEATHERLY L R.Intensification of ammonia removal in a combined ion-exchange and nitrification column[J].Chemical Engineering Journal,2008,135(1):15-24.
    [10]WETT B,RAUCH W.The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wash water[J].Water Research,2003,37(5):1100-1110.
    [11]国家环保总局.水和废水检测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [12]姚宏禄.综合养鱼高产池塘的溶氧变化周期[J].水生生物学报,1988,12(3):199-211.
    [13]RUIZ J M,ROMERO J.Effects of disturbances caused by coastal constructions on spatial structure,growth dynamics and photosynthesis of he seagrass Posidonia oceania[J].Marine Pollution Bulletin,2003,46:1523-1533.
    [14]NOBORU M,HITOSHI K,YUZURUM M,et al.Relationships between critical photon irradiance for growth and daily compensation point of juvenile Sargassum macrocarpum[J].Fisheries Science,2000,66(6):1032-1038.
    [15]MIYUKI M,YASUTSUGU Y,YUSHO A.Critical light conditions for young Ecklonia cava and Eisenia bicyclis with reference to photosynthesis[J].Hydrobiologia,1987,151:447-455.
    [16]朱浩,刘兴国,王健,等.池塘养殖水体不同水层水质变化研究[J].渔业现代化,2012,39(4):12-15.
    [17]李奕雯,李卓佳,曹煜成,等.对虾海水高密度养殖后期水质因子的昼夜变化规律[J].南方水产,2010,6(6):26-31.
    [18]宋学宏,邴旭文,孙丽萍,等.阳澄湖养殖水体COD降解动力学研究[J].安徽农业大学学报,2010,37(2):328-332.
    [19]纪晓亮,李鹏程,商栩,等.城市湿地水质昼夜变化研究[J].环境保护科学,2013,39(5):18-21,50.
    [20]高岩,易能,张志勇,等.凤眼莲对富营养化水体硝化、反硝化脱氮释放N20的影响[J].环境科学学报,2012,32(2):349-359.
    [21]赵琳,李正魁,周涛,等.伊乐藻-氮循环菌联用对太湖梅梁湾水体脱氮的研究[J].环境科学,2013,34(8):3057-3063.
    [22]高光.伊乐藻、轮叶黑藻净化养鱼污水效果试验[J].湖泊科学,1996,8(2):184-188.
    [23]洪美玲,陈立侨,孙新谨,等.亚硝酸盐急性胁迫对中华绒螯蟹幼体相关免疫指标和应激蛋白(HSP70)表达的影响[J].应用与环境生物学报,2011,17(5):688-693.
    [24]曲克明,徐勇,马绍赛,等.不同溶解氧条件下亚硝酸盐和非离子氨对大菱鲆的急性毒性效应[J].海洋水产研究,2007,28(4):83-88.
    [25]吕晓燕,李嘉尧,方燕,等.亚硝酸盐对红螯光壳螯虾不同组织免疫相关酶活性及超微结构的影响[J].水产学报,2010,34(12):1812-1820.
    [26]张砺彦.溶氧对好氧颗粒污泥同步硝化反硝化脱氮的影响[J].安全与环境学报,2006,6(6):1-4.
    [27]吴晓霞,范长禄,凌辉,等.伊乐藻对富营养化水体的净化作用分析[J].西北植物学报,2013,33(4):787-791.
    [28]PALOMMKI R F,TAYLOR M D,BIELENBERG D G,et al.Nitrogen and phosphor-rus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands[J].Water,Air&Pollution,2009,197(1/2/3/4):223-232.
    [29]隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102-105.
    [30]李波,樊启学,张磊,等.不同溶氧水平下氨氮和亚硝酸盐对黄颡鱼的急性毒性研究[J].淡水渔业,2009,39(3):31-35.
    [31]廖晓数,贺锋,成水平,等.选定因素下湿地基质中氨氮释放的正交试验研究[J].农业环境科学学报,2008,27(1):291-294.
    [32]俞盈,付广义,陈繁忠,等.水体中三氮转化规律及影响因素研究[J].地球化学,2008,37(6):565-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700