缝隙八木纳米天线设计及宽波段吸收特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Slot Yagi-Uda Nanoantennas and Their Broadband Absorption Properties
  • 作者:朱路 ; 王杨 ; 刘媛媛 ; 黄志群 ; 慈白山
  • 英文作者:ZHU Lu;WANG Yang;LIU Yuan-yuan;HUANG Zhi-qun;CI Bai-shan;Department of Information Engineering,East China Jiaotong University;
  • 关键词:表面等离激元 ; 能量收集 ; 缝隙八木纳米光学天线 ; 时域有限差分 ; 远场方向性 ; 吸收特性
  • 英文关键词:Surface plasmon polaritons;;Energy harvest;;Slot Yagi-Uda nano optical antenna;;Finite difference time domain;;Far-field directivity;;Absorption characteristics
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:华东交通大学信息工程学院;
  • 出版日期:2016-08-03 11:23
  • 出版单位:光子学报
  • 年:2016
  • 期:v.45
  • 基金:国家自然科学基金(Nos.31101081,61162015);; 江西省科技支撑项目(No.20151BBE50095)资助~~
  • 语种:中文;
  • 页:GZXB201610026
  • 页数:8
  • CN:10
  • ISSN:61-1235/O4
  • 分类号:144-151
摘要
针对传统光伏电池能量收集易受环境与光照时间限制的问题,本文设计了一种用于太阳能收集的缝隙八木纳米天线单元及阵列.采用时域有限差分法分析缝隙间距对纳米天线远场方向性和近场分布的影响,并研究缝隙八木纳米天线阵列的吸收特性及不同缝隙间距对阵列天线吸收率的影响.研究远场方向性发现,当缝隙间距增加到一定距离时,天线方向图出现多个副瓣并产生新的辐射模式;通过对近场分析表明,新辐射模式的产生来源于高阶模式的局域表面等离激元.天线阵列吸收率的仿真结果表明:在400~1 500nm波段,随着缝隙间距的增加,缝隙八木纳米天线阵列吸收率呈上升趋势,当缝隙间距等于80nm时,在400~660nm、760~1 300nm两个波段内吸收率较高,吸收峰值最大可以达到98%;以吸收率大于50%为基准,当缝隙间距等于80nm时,其吸收波段最宽.
        Aim at the problem that the energy collection of traditional photovoltaic cells is susceptible to environment and illumination time constraints,a slot Yagi-Uda nanoantenna unit and array was proposed for solar energy harvest.By adopting the finite difference time domain method,the influence of gap spacing on the nano antenna far field directivity and the near field distribution was analyzed.The influence of the absorption characteristics of slot Yagi-Uda nanoantenna array and the different slot spacing on the array antenna absorption rate was studied.The study of far field directivity shows that,when the slot spacing increases to a certain distance,the antenna far-filed pattern appears multi-sidelobe and a new radiation pattern.The analysis of the near field thows that,the new radiation pattern is derived from the high order mode of localized surface plasmon.The simulation results of the antenna array absorption rate show that,in the waveband range from 400 nm to 1500 nm,with the increase of slot spacing,the absorption rate shows a trend of rising.When the slot spacing is equal to 80 nm,the antenna absorption rate is higher in the band range from 400 nm to 660 nm and the range from760 nm to 1300 nm,the absorption peak value can reach 98%.The absorption rate exceeds 50% as a benchmark,when the slot spacing is equal to 80 nm,the absorption band is widest.
引文
[1] SHIGETA R,SASAKI T,QUAN D M,et al.Ambient RF energy harvesting sensor device with capacitor-leakage-aware duty cycle control[J].IEEE Sensors Journal,2013,13(8):2973-2983.
    [2] HENRY C H.Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J].Journal of Applied Physics,1980,51(8):4494-4500.
    [3] ZHAO W,ZHAO X P.Relationship of surface plasmon polaritons and nanoparticles morphology[J].Acta Photonica Sinica,2011,40(4):556-560.赵炜,赵晓鹏.纳米粒子形貌与表面等离子体激元关系[J].光子学报,2011,40(4):556-560.
    [4] ZHU J,LI J J,ZHAO J W.Distance-dependent fluorescence quenching efficiency of gold nanodisk effect of aspect ratio dependent plasmonic absorption[J].Plasmonics,2011,111(28):1-7.
    [5] JIANG Shuang-feng,KONG fan-min,LI Kang,et al.Study of far-field directivity of optical dipole antenna[J].Acta Physica Sinica,2011,60(4):371-375.蒋双凤,孔凡敏,李康等.光偶极子天线的远场方向性研究[J].物理学报,2011,60(4):371-375.
    [6] SHEN S,FORSBERG E,HAN Z,et al.Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings[J].Optics Express,2016,24(2):225-230.
    [7] EIZNER E,AVAYU O,DITCOVSKI R,et al.Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons[J].Nano Letters,2015,15(9):6215-21.
    [8] OLIVIA N,MARTIJN W,MORTENSEN N A.Plasmon modes of a single silver nanorod:an eletron energy loss study[J].Optics Express,2011,19(16):15371-15379.
    [9] LI Hong-guang.Far-field characteristics of silver nanodisk optical antenna[J].Acta Photonica Sinica,2012,41(8):977-981.李宏光.银纳米圆盘光天线的远场方向性研究[J].光子学报,2012,41(8):977-981.
    [10] ZARRABI F B.Sub wavelength plasmonic nano-antenna with H and U shape for enhancement of multi resonance[J].Optik International Journal for Light and Electron Optics,2016,127(10):4490-4494.
    [11] MIROSHNICHENKO A E,MAKSYMOV I S,DAVOYAN A R,et al.An arrayed nanoantenna for broadband light emission and detection[J].Physica Status Solidi(RRL)-Rapid Research Letters,2011,5(9):347–349.
    [12] LIN N,WEN F,ZHAO Y,et al.Individual nanoantennas loaded with three-dimensional optical nanocircuits[J].Nano Letters,2013,13(1):142-147.
    [13] HUSSEIN M,FAHMY AREED N F,HAMEED M F O,et al.Design of flower-shaped dipole nano-antenna for energy harvesting[J].Iet Optoelectronics,2014,8(8):167-173.
    [14] KOTTER D K,NOVACK S D,SLAFER W D,et al.Theory and manufacturing processes of solar nanoantenna electromagnetic collectors[J].Journal of Solar Energy Engineering,2010,132(1):937-937.
    [15] ZHANG J,ZHANG W,ZHU X,et al.Resonant slot nanoantennas for surface plasmon radiation in optical frequency range[J].Applied Physics Letters,2012,100(24):241115.
    [16] JOHNSON P B.Optical constants of the noble metals[J].Physical Review B,1972,6(12):4370-4379.
    [17] NOVOTNY L,HULST N V.Antennas for light[J].Nature Photonics,2011,5(2):83-90.
    [18] TAMIINIAU T H,STEFANI F D,HULST N F V.Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna[J].Optics Express,2008,16(14):10858-10866.
    [19] DENG Hu,CHEN Qi,HE Xiao-yang,et al.Power combining technology in three-way terahertz photoconductive antenna[J].Chinese Journal of Luminescence,2014,35(12):1500-1505.邓琥,陈琦,何晓阳,等.三路太赫兹光导天线的功率合成技术[J].发光学报,2014,35(12):1500-1505.
    [20] 王珩.光学纳米天线设计及吸收增强特性研究[D].哈尔滨:哈尔滨工业大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700