构造煤纳米级孔隙对瓦斯吸附能力的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Influence of Nanoscale Pores of Tectonic Coal on Gas Adsorption Capacity
  • 作者:陈卓 ; 雷东记 ; 张玉贵
  • 英文作者:CHEN Zhuo;LEI Dongji;ZHANG Yugui;State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University;
  • 关键词:构造煤 ; 纳米级孔隙 ; 低温液氮 ; 瓦斯吸附能力 ; 吸附模型
  • 英文关键词:tectonic coal;;nanoscale pore;;low temperature liquid nitrogen;;gas adsorption capacity;;adsorption model
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:河南理工大学河南省瓦斯地质与瓦斯治理重点实验室-省部共建国家重点实验室培育基地;
  • 出版日期:2019-03-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.537
  • 基金:国家自然科学基金青年科学基金资助项目(51704101);; 煤炭资源与安全开采国家重点实验室开放课题资助项目(SKLCRSM14KFB11)
  • 语种:中文;
  • 页:MKAQ201903001
  • 页数:5
  • CN:03
  • ISSN:21-1232/TD
  • 分类号:7-10+14
摘要
为研究煤的纳米级(<100 nm)孔隙对瓦斯吸附能力的影响,对3种不同煤样的原煤和构造煤孔隙结构进行研究,并建立温度-压力综合吸附模型分析煤体的吸附瓦斯能力。研究结果表明:纳米级孔隙(孔径小于100 nm)是煤对瓦斯吸附强的决定因素,纳米级孔隙微孔的比表面积是影响瓦斯吸附量的主要因素;在相同温度压力下,古汉山矿煤样瓦斯吸附量是薛湖矿煤样和平顶山矿煤样的1.3~1.8倍和1.02~1.2倍;微小孔的孔容与瓦斯吸附量呈现出明显的正相关;通过建立温度-压力模型预测瓦斯吸附量是可行的。
        In order to study the influence of nanoscale pore(<100 nm) on gas adsorption capacity, the pore structure of raw coal and structural coal of three different coal samples was studied. Moreover, a temperature-pressure comprehensive adsorption model was established to analyze the gas adsorption capacity of coal. The results show that nanoscale pore(pore diameter less than 100 nm) is the decisive factor of gas adsorption strength of coal, and the specific surface area of nanoscale pore is the main factor affecting gas adsorption; under the same temperature and pressure, the adsorption capacity of Guhanshan Mine was 1.3 to 1.8 times that of Xuehu Mine and 1.02 to 1.2 times that of Pingdingshan Mine; there was a significant positive correlation between the pore capacity and gas adsorption capacity. It is feasible to predict gas adsorption capacity by establishing temperature-pressure model.
引文
[1]姜家钰,雷东记,谢向向,等.构造煤孔隙结构与瓦斯耦合特性研究[J].安全与环境学报,2015,15(1):123-128.
    [2]王向浩,王延斌,高莎莎,等.构造煤与原生结构煤的孔隙结构及吸附性差异[J].高校地质学报,2012,18(3):528-532.
    [3]琚宜文,姜波,侯泉林,等.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):269-283.
    [4]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出的影响[J].煤炭学报,2011,36(4):609-613.
    [5]屈争辉.构造煤结构及其对瓦斯特性的控制机理研究[J].煤炭学报,2011,36(3):533-540.
    [6]钟玲文,张慧,员争荣,等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-30.
    [7]张玉贵,焦银秋,雷东记,等.煤体纳米级孔隙低温氮吸附特征及分形性研究[J].河南理工大学学报(自然科学版),2016,35(2):141-148.
    [8]陈向军,刘军,王林,等.不同变质程度煤的孔径分布及其对吸附常数的影响[J].煤炭学报,2013,38(2):294-300.
    [9]泉林,李会军,范俊佳,等.构造煤结构与煤层气赋存研究进展[J].中国科学:地球科学,2012,42(10):1487-1492.
    [10]杨明,刘亚鹏.高阶煤孔隙特征的低场核磁共振实验研究[J].中国安全生产科学技术,2016,12(11):63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700