DNA折纸术的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent progress in DNA origami
  • 作者:石党委 ; 王振刚 ; 徐景坤 ; 丁宝全
  • 英文作者:SHI DangWei 1,2 , WANG ZhenGang 2 , XU JingKun 1 & DING BaoQuan 2 1 Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; 2 National Center for Nanoscience and Technology, Beijing 100190, China
  • 关键词:DNA自组装 ; DNA折纸术 ; 纳米器件 ; 模板 ; 可控制 ; 高效
  • 英文关键词:DNA self-assembly, DNA origami, nanodevice, template, controllable, efficient
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:江西科技师范大学江西省有机功能分子重点实验室;国家纳米科学中心;
  • 出版日期:2013-08-30
  • 出版单位:科学通报
  • 年:2013
  • 期:v.58
  • 基金:国家重点基础研究发展计划(2012CB934000);; 中国科学院“百人计划”;; 国家自然科学基金(21173059,91127021,51073074)资助
  • 语种:中文;
  • 页:KXTB201324005
  • 页数:10
  • CN:24
  • ISSN:11-1784/N
  • 分类号:21-30
摘要
DNA折纸术是近年来提出的一种新颖的DNA自组装方法,是DNA纳米技术和DNA自组装领域的重大研究进展之一.与传统的DNA自组装技术不同,DNA折纸术通过一条长的环状单链DNA与一系列预设计的短链DNA片段碱基互补配对,构造出高度复杂的二维纳米图案和三维纳米结构.与传统纳米自组装方法相比,DNA折纸术构造的二维、三维纳米结构,具有更佳的精细程度和可控性,而且其实验条件要求低,操作简单,效率高.将二维或三维DNA折纸纳米结构作为模板,与功能纳米粒子进行组装,能够得到具有特殊性能的纳米器件,因此DNA折纸术在纳米领域具有巨大的潜在应用价值.本文介绍了DNA折纸术在功能复合结构组装方面的研究进展与DNA折纸术的展望.
        As a novel self-assembly method developed in recent years, DNA origami is one of the greatest progress in the field of DNA nanotechnology and DNA self-assembly. Different from traditional DNA self-assembly, DNA origami, on the basis of the hybridization of a long circular genomic single stranded DNA with a group of staple strands, can be used to construct two-or three-dimensional sophisticated shapes at the nanoscale. Moreover, the nanostructures by DNA origami are more predictable, precise, controllable and efficient. The merits also include relatively low requirements for the experimental conditions and operation skills. A variety of functional nanoparticles can be assembled onto the DNA origami nanoscaffolds, to obtain complicate nanodevices with special functions. Therefore, DNA origami has shown great potential in nanotechnology. This review describes the progress of DNA origami in the assembly of diverse DNA nanostructures and the prospect of DNA origami in future.
引文
1Castro C E,Kilchherr F,Kim D N,et al.A primer to scaffolded DNA origami.Nat Methods,2011,8:221–229
    2Lin C X,Liu Y,Yan H.Designer DNA nanoarchitectures.Biochemistry,2009,48:1663–1674
    3Seeman N C.Nucleic acid junctions and lattices.J Theor Biol,1982,99:237–247
    4Seeman N C,Lukeman P S.Nucleic acid nanostructures:Bottom-up control of geometry on the nanoscale.Rep Prog Phys,2005,68:237–270
    5Rothemund P W.Folding DNA to create nanoscale shapes and patterns.Nature,2006,440:297–302
    6Seeman N C.Nanomaterials based on DNA.Annu Rev Biochem,2010,79:65–87
    7Aldaye F A,Palmer A L,Sleiman H F.Assembling materials with DNA as the guide.Science,2008,321:1795–1799
    8Shih W M,Lin C X,Knitting complex weaves with DNA origami.Curr Opin Struct Biol,2010,20:276–282
    9Nangreave J,Han D,Liu Y,et al.DNA Origami:A history and current perspective.Curr Opin Chem Biol,2010,14:608–615
    10Keller A,Bald I,Rotaru A,et al.Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates.ACS Nano,2012,6:4392–4399
    11Acuna G P,Bucher M,Stein I H,et al.Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA ori-gami.ACS Nano,2012,6:3189–3195
    12Bell N A W,Engst C R,Ablay M,et al.DNA origami nanopores.Nano Lett,2012,12:512–517
    13Fu J L,Liu M H,Liu Y,et al.Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostruc-tures.J Am Chem Soc,2012,134:5516–5519
    14Subramani R,Juul S,Rotaru A,et al.A novel secondary DNA binding site in human topoisomerase I unravelled by using a2D DNA ori-gami platform.ACS Nano,2010,4:5969–5977
    15Ke Y G,Sharma J,Liu M H,et al.Scaffolded DNA origami of a DNA tetrahedron molecular container.Nano Lett,2009,9:2445–2447
    16Seeman N C.DNA in a material world.Nature,2003,421:427–431
    17Winfree E,Liu F R,Seeman N C.Design and self-assemble of two-dimensional DNA crystals.Nature,1998,394:539–544
    18Rothemund P W,Papadakis N,Winfree E.Algorithmic self-assembly of DNA Sierpinski triangles.PLoS Biol,2004,2:2041–2053
    19Sa-Ardyen P,Vologodskii A V,Seeman N C.The flexibility of DNA double crossover molecules.Biophys J,2003,84:3829–3837
    20Fu T J,Seeman N C.DNA double-crossover molecules.Biochemistry,1993,32:3211–3220
    21Li X J,Yang X P,Qi J,et al.Antiparallel DNA double crossover molecules as components for nanoconstruction.J Am Chem Soc,1996,118:6131–6140
    22LaBean T H,Yan H,Kopatsch J,et al.Construction,analysis,ligation,and self-assembly of DNA triple crossover complexes.J Am Chem Soc,2000,122:1848–1860
    23Yan H,Park S H,Finkelstein G,et al.DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science,2003,301:1882–1884
    24He Y,Chen Y,Liu H P,et al.Self-assembly of hexagonal DNA two-dimensional(2D)arrays.J Am Chem Soc,2005,127:12202–12203
    25He Y,Ye T,Su M,et al.Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral.Nature,2008,452:198–201
    26Zhang F,Nangreave J,Liu Y,et al.Reconfigurable DNA origami to generate quasifractal patterns.Nano Lett,2012,12:3290–3295
    27Wei B R,Dai M J,Yin P.Complex shapes self-assembled from single-stranded DNA tiles.Nature,2012,485:623–626
    28Douglas S M,Chou J J,Shih W M.DNA-nanotube-induced alignment of membrane proteins for NMR structure determination.Proc Natl Acad Sci USA,2007,104:6644–6648
    29Douglas S M,Dietz H,Liedl T,et al.Self-assembly of DNA into nanoscale three-dimensional shapes.Nature,2009,459:414–418
    30Dietz H,Douglas S M,Shih W M.Folding DNA into twisted and curved nanoscale shapes.Science,2009,325:725–730
    31Andersen E S,Dong M,Nielsen M M,et al.Self-assembly of a nanoscale DNA box with a controllable lid.Nature,2009,459:73–76
    32Han D R,Pal S,Nangreave J,et al.DNA origami with complex curvatures in three-dimensional space.Science,2011,332:342–346
    33Han D R,Pal S,Liu Y,et al.Folding and cutting DNA into reconfigurable topological nanostructures.Nat Nanotech,2010,5:712–717
    34Ke Y G,Voigt N V,Gothelf K V,et al.Multilayer DNA origami packed on hexagonal and hybrid lattices.J Am Chem Soc,2012,134:1770–1774
    35Ke Y G,Douglas S M,Liu M H,et al.Multilayer DNA origami packed on a square lattice.J Am Chem Soc,2009,131:15903–15908
    36Marini M,Piantanida L,Musetti R,et al.A revertible,autonomous,self-assembled DNA-origami nanoactuator.Nano Lett,2011,11:5449–5454
    37Pilo-Pais M,Goldberg S,Samano E,et al.Connecting the nanodots:Programmable nanofabrication of fused metal shapes on DNA tem-plates.Nano Lett,2011,11:3489–3492
    38Maye M M,Cuisinier M,Nykypanchuk D,et al.High throughput assembly of DNA-linked nanoparticle clusters.Nat Mater,2009,8:388–391
    39Cheng W L,Campolongo M J,Cha J J,et al.Free-standing nanoparticle superlattice sheets controlled by DNA.Nat Mater,2009,8:519–525
    40Tian J,Ma K,Saaem I.Advancing high-throughput gene synthesis technology.Mol BioSyst,2009,5:714–722
    41Mirkin C A,Letsinger R L,Mucic R C,et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature,1996,382:607–609
    42Zhang J P,Liu Y,Ke Y G,et al.Periodic square-like gold nanoparticle arrays templated by self-assembled2D DNA nanogrids on a sur-face.Nano Lett,2006,6:248–251
    43Sharma J,Chhabra R,Liu Y,et al.DNA templated self-assembly of two-dimensional and periodical gold nanoparticle arrays.Angew Chem Int Ed,2006,45:730–735
    44Zheng J W,Constantinou P E,Micheel C,et al.Two-dimensional nanoparticle arrays show the organizational power of robust DNA mo-tifs.Nano Lett,2006,6:1502–1504
    45Sharma J,Chhabra R,Cheng A C,et al.Control of self-assembly of DNA tubules through integration of gold nanoparticles.Science,2009,323:112–116
    46Zhao Z,Liu Y,Yan H.Encapsulation of gold nanoparticles in a DNA origami cage.Angew Chem Int Ed,2011,50:2041–2044
    47Pal S,Deng Z T,Ding B Q,et al.DNA origami directed self-assembly of discrete silver nanoparticle architectures.Angew Chem Int Ed,2010,49:2760–2764
    48Stein I H,Steinhauter C,Tinnefeld P.Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami.J Am Chem Soc,2011,133:4193–4195
    49Cohen J D,Sadowski J P,Dervan P B.Addressing single molecules on DNA nanostructures.Angew Chem Int Ed,2007,119:7956–7959
    50Erben C M,Goodman R P,Turberfield A J.Single-molecule protein encapsulation in a rigid DNA cage.Angew Chem Int Ed,2006,118:7574–7577
    51Chhabra R,Sharma J,Ke Y G,et al.Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures.J Am Chem Soc,2007,129:10304–10305
    52SaccàB,Meyer R,Erkelenz M,et al.Orthogonal protein decoration of DNA origami.Angew Chem Int Ed,2010,49:9378–9383
    53Williams B A R,Lund K,Liu Y,et al.Self-assembled peptide nanoarrays:An approach to studying protein-protein interactions.Angew Chem Int Ed,2007,119:3111–3114
    54Maune H T,Han S P,Barish R D,et al.Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami tem-plates.Nat Nanotech,2010,5:61–66
    55Ko S H,Gallatin G M,Liddle J A.Nanomanufacturing with DNA origami:Factors affecting the kinetics and yield of quantum dot binding.Adv Funct Mater,2012,22:1015–1023
    56Sharma J,Ke Y G,Lin C X,et al.DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns.Angew Chem Int Ed,2008,47:5157–5159
    57Bui H,Onodera C,Kidwell C,et al.Programmable periodicity of quantum dot arrays with DNA origami nanotubes.Nano Lett,2010,10:3367–3372
    58Kershner R J,Bozano L D,Micheel C M,et al.Placement and orientation of individual DNA shapes on lithographically patterned surfaces.Nat Nanotech,2009,4:557–561
    59Hung A M,Cha J N.Templated assembly of DNA origami gold nanoparticle arrays on lithographically patterned surfaces.Methods Mol Biol,2011,749:187–197
    60Daniel M C,Astruc D.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology.Chem Rev,2004,104:293346
    61Giljohann D A,Seferos D S,Daniel W L,et al.Gold nanoparticles for biology and medicine.Angew Chem Int Ed,2010,49:3280–3294
    62Li K R,Stockman M I,Bergman D J.Self-similar chain of metal nanospheres as an efficient nanolens.Phys Rev Lett,2003,91:227402
    63Ding B Q,Deng Z T,Yan H,et al.Gold nanoparticle self-similar chain structure organized by DNA origami.J Am Chem Soc,2010,132:3248–3249
    64Shen X B,Song C,Wang J Y,et al.Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures.J Am Chem Soc,2012,134:146–149
    65Kuzyk A,Schreiber R,Fan Z Y,et al.DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.Nature,2012,483:311–314
    66Ding B Q,Wu H,Yan H,et al.Interconnecting gold islands with DNA origami nanotubes.Nano Lett,2010,10:5065–5069
    67Fu Y,Zhang J,Joseph R,et al.Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods.J Am Chem Soc,2010,132:5540–5541
    68Funston A M,Novo C,Davis T J,et al.Plasmon coupling of gold nanorods at short distances and in different geometries.Nano Lett,2009,9:1651–1658
    69Woo K C,Shao L,Chen H J,et al.Universal scaling and fano resonance in the plasmon coupling between gold nanorods.ACS Nano,2011,5:5976–5986
    70Li Y,Qian F,Lieber C M,et al.Nanowire electronic and optoelectronic devices.Mater Today,2006,9:18–27
    71Pal S,Deng Z T,Wang H N,et al.DNA directed self-assembly of anisotropic plasmonic nanostructures.J Am Chem Soc,2011,133:17606–17609
    72Li Z,Liu M H,Wang L,et al.Molecular behavior of DNA origami in higher-order self-assembly.J Am Chem Soc,2010,132:13545–13552
    73Majumder U,Rangnekar A,Gothelf K V,et al.Design and construction of double-decker tile as a route to three-dimensional periodic as-sembly of DNA.J Am Chem Soc,2011,133:3843–3845
    74Zhao Z,Yan H,Liu Y.A route to scale up DNA origami using DNA tiles as folding staples.Angew Chem Int Ed,2010,122:1456–1459
    75Liu W,Zhong H,Wang R,et al.Crystalline two-dimensional DNA-origami arrays.Angew Chem Int Ed,2011,123:278–281
    76Song J,Arbona J M,Zhang Z,et al.Direct visualization of transient thermal response of a DNA origami.J Am Chem Soc,2012,134:9844–9847
    77Li Z,Wang L,Yan H,et al.Effect of DNA hairpin loops on the twist of planar DNA origami tiles.Langmuir,2012,28:1959–1965
    78SaccàB,Meyer M,Feldkamp U,et al.High-throughput,real-time monitoring of the self-assembly of DNA nanostructures by FRET spectroscopy.Angew Chem Int Ed,2008,47:2135–2137
    79Nangreave J,Yan H,Liu Y.Studies of thermal stability of multivalent DNA hybridization in a nanostructured system.Biophys J,2009,97:563–571
    80Zhao Z,Liu Y,Yan H.Organizing DNA origami tiles into larger structures using preformed scaffold frames.Nano Lett,2011,11:2997–3002
    81Yang Y,Han D R,Nangreave J,et al.DNA origami with double-stranded DNA as a unified scaffold.ACS Nano,2012,6:8209–8215
    82Mei Q,Wei X X,Su F Y,et al.Stability of DNA origami nanoarrays in cell lysate.Nano Lett,2011,11:1477–1482
    83Schüller V J,Heidegger S,Sandholzer N,et al.Cellular immunostimulation by CpG-sequence-coated DNA origami structures.ACS Nano,2011,5:9696–9702
    84Woo S,Rothemund P W K.Programmable molecular recognition based on the geometry of DNA nanostructures.Nat Chem,2011,3:620–627
    85Alloyeaua D,Ding B Q,Ramasse Q,et al.Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope.Chem Commun,2011,47:9375–9377
    86Rajendran A,Endo M,Katsuda Y,et al.Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly.J Am Chem Soc,2011,133:14488–14491
    87Yin P,Hariadi R F,Sahu S,et al.Programming DNA tube circumferences.Science,2008,321:824–826
    88Liu H P,Chen Y,He Y,et al.Approaching the limit:Can one DNA oligonucleotide assemble into large nanostructures.Angew Chem Int Ed,2006,45:1942–1945
    89Endo M,Sugita T,Rajendran A,et al.Two-dimensional DNA origami assemblies using a four-way connector.Chem Commun,2011,47:3213–3215
    90Jiang Q,Song C,Nangreave J,et al.DNA origami as a carrier for circumvention of drug resistance.J Am Chem Soc,2012,134:13396–13403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700