DNA纳米自组装的研究进展及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress and applications of self-assembled DNA nanostructures
  • 作者:葛志磊 ; 樊春海 ; YAN ; Hao
  • 英文作者:GE ZhiLei;FAN ChunHai;YAN Hao;Laboratory of Physical Biology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences;Center for Single Molecule Biophysics,The Biodesign Institute,Arizona State University;
  • 关键词:DNA纳米技术 ; DNA纳米自组装 ; DNA折纸术 ; DNA计算
  • 英文关键词:DNA nanotechnology,DNA self-assembly,DNA origami,DNA computing
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院上海应用物理研究所物理生物学实验室;Center for Single Molecule Biophysics,The Biodesign Institute,Arizona State University;
  • 出版日期:2014-01-20
  • 出版单位:科学通报
  • 年:2014
  • 期:v.59
  • 语种:中文;
  • 页:KXTB201402006
  • 页数:12
  • CN:02
  • ISSN:11-1784/N
  • 分类号:44-55
摘要
DNA纳米技术是一种自下而上的分子自组装模式,由分子构造为起点基于核酸分子的物理和化学性质自发地形成稳定结构,遵循严格的核酸碱基配对原则,使得DNA被用作构建结构的材料基元而不是在活细胞中那样作为遗传信息的载体.通过合理地设计碱基链来达成精密控制的纳米级复杂结构的目的,研究人员在这个领域已经建立起诸多二维、三维的复杂纳米结构以及各种具有不同功能的分子机器,比如DNA计算机.本文总结了近年来DNA纳米自组装方面取得的最新进展,同时介绍DNA纳米自组装的几种不同组装方法,并对其相关应用进行了展望.
        DNA nanotechnology is an example of bottom-up molecular self-assembly,in which molecular components spontaneously organize into stable structures;the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers.In this field,nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells.This use is enabled by the strict base pairing rules of nucleic acids,which cause only portions of strands with complementary base sequences to bind together to form strong,rigid double helix structures.This allows for the rational design of base sequences that will selectively assemble to form complex target structures with precisely controlled nanoscale features.This article mainly reviews the developments of DNA self-assembly achieved recently and also introduces the design methods of it,which would be helpful and enlightened for our future research.
引文
1 Kallenbach N R,Ma R I,Seeman N C.An immobile nucleic-acid junction constructed from oligonucleotides.Nature,1983,305:829–831
    2 Fu T J,Seeman N C.DNA double-crossover molecules.Biochemistry,1993,32:3211–3220
    3 Labean T H,Yan H,Kopatsch J,et al.Construction,analysis,ligation,and self-assembly of DNA triple crossover complexes.J Am Chem Soc,2000,122:1848–1860
    4 Reishus D,Shaw B,Brun Y,et al.Self-assembly of DNA double-double crossover complexes into high-density,doubly connected,planar structures.J Am Chem Soc,2005,127:17590–17591
    5 Mathieu F,Liao S P,Kopatscht J,et al.Six-helix bundles designed from DNA.Nano Lett,2005,5:661–665
    6 Yan H,Park S H,Finkelstein G,et al.DNA-templated self-assembly of protein arrays and highly conductive nanowires.Science,2003,301 :1882–1884
    7 Liu D,Wang M S,Deng Z X,et al.Tensegrity:Construction of rigid DNA triangles with flexible four-arm DNA junctions.J Am Chem Soc,2004,126:2324–2325
    8 He Y,Chen Y,Liu H P,et al.Self-assembly of hexagonal DNA two-dimensional(2D)arrays.J Am Chem Soc,2005,127:12202–12203
    9 He Y,Tian Y,Ribbe A E,et al.Highly connected two-dimensional crystals of DNA six-point-stars.J Am Chem Soc,2006,128:15978–15979
    10 Zhang C,Su M,He Y,et al.Conformational flexibility facilitates self-assembly of complex DNA nanostructures.Proc Natl Acad Sci USA,2008,105:10665–10669
    11 Liu H P,He Y,Ribbe A E,et al.Two-dimensional(2D)DNA crystals assembled from two DNA strands.Biomacromolecules,2005,6:2943–2945
    12 Liu H P,Chen Y,He Y,et al.Approaching the limit:Can one DNA oligonucleotide assemble into large nanostructures?Angew Chem Int Ed,2006,45:1942–1945
    13 Yin P,Hariadi R F,Sahu S,et al.Programming DNA tube circumferences.Science,2008,321:824–826
    14 Wei B,Dai M,Yin P.Complex shapes self-assembled from single-stranded DNA tiles.Nature,2012,485:623–626
    15 Ke Y,Ong L L,Shih W M,et al.Three-dimensional structures self-assembled from DNA bricks.Science,2012,338:1177–1183
    16 Adleman L M.Molecular computation of solutions to combinatorial problems.Science,1994,266:1021–1024
    17 Yan H,Labean T H,Feng L P,et al.Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.Proc Natl Acad Sci USA,2003,100:8103–8108
    18 Shih W M,Quispe J D,Joyce G F.A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron.Nature,2004,427:618 –621
    19 Rothemund P W K.Folding DNA to create nanoscale shapes and patterns.Nature,2006,440:297–302
    20 Qian L,Wang Y,Zhang Z,et al.Analogic China map constructed by DNA.Chin Sci Bull,2006,51:2973–2976
    21 Andersen E S,Dong M,Nielsen M M,et al.Self-assembly of a nanoscale DNA box with a controllable lid.Nature,2009,459:73–75
    22 Ke Y,Sharma J,Liu M,et al.Scaffolded DNA origami of a DNA tetrahedron molecular container.Nano Lett,2009,9:2445–2447
    23 Douglas S M,Chou J J,Shih W M.DNA-nanotube-induced alignment of membrane proteins for NMR structure determination.Proc Natl Acad Sci USA,2007,104:6644–6648
    24 Seeman N C.Nucleic-acid junctions and lattices.J Theoret Biol,1982,99:237–247
    25 Labean T H.Nanotechnology another dimension for DNA art.Nature,2009,459:331–332
    26 Dietz H,Douglas S M,Shih W M.Folding DNA into twisted and curved nanoscale shapes.Science,2009,325:725–730
    27 Ke Y,Douglas S M,Liu M,et al.Multilayer DNA origami packed on a square lattice.J Am Chem Soc,2009,131:15903–15908
    28 Han D,Pal S,Nangreave J,et al.DNA origami with complex curvatures in three-dimensional space.Science,2011,332:342–346
    29 Mao C D,Sun W Q,Shen Z Y,et al.A nanomechanical device based on the B-Z transition of DNA.Nature,1999,397:144–146
    30 Yurke B,Turberfield A J,Mills A P,et al.A DNA-fuelled molecular machine made of DNA.Nature,2000,406:605–608
    31 Yan H,Zhang X P,Shen Z Y,et al.A robust DNA mechanical device controlled by hybridization topology.Nature,2002,415:62–65
    32 Goodman R P,Heilemann M,Doose S,et al.Reconfigurable,braced,three-dimensional DNA nanostructures.Nat Nanotechnol,2008,3:93–96
    33 Park S H,Pistol C,Ahn S J,et al.Finite-size,fully addressable DNA tile lattices formed by hierarchical assembly procedures.Angew Chem Int Ed,2006,45:735–739
    34 Douglas S M,Bachelet I,Church G M.A Logic-gated nanorobot for targeted transport of molecular payloads.Science,2012,335:831–834
    35 Shin J S,Pierce N A.A synthetic DNA walker for molecular transport.J Am Chem Soc,2004,126:10834–10835
    36 Sherman W B,Seeman N C.A precisely controlled DNA biped walking device.Nano Lett,2004,4:1203–1207
    37 Tian Y,He Y,Chen Y,et al.Molecular devices—A DNAzyme that walks processively and autonomously along a one-dimensional track.Angew Chem Int Ed,2005,44:4355–4358
    38 Bath J,Green S J,Turberfield A J.A free-running DNA motor powered by a nicking enzyme.Angew Chem Int Ed,2005,44:4358–4361
    39 Lund K,Manzo A J,Dabby N,et al.Molecular robots guided by prescriptive landscapes.Nature,2010,465:206–210
    40 He Y,Liu D R.Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker.Nat Nanotechnol,2010,5:778–782
    41 Zhang D Y,Seelig G.Dynamic DNA nanotechnology using strand-displacement reactions.Nat Chem,2011,3:103–113
    42 Seelig G,Soloveichik D,Zhang D Y,et al.Enzyme-free nucleic acid logic circuits.Science,2006,314:1585–1588
    43 Qian L,Winfree E.Scaling up digital circuit computation with DNA strand displacement cascades.Science,2011,332:1196–1201
    44 Yin P,Choi H M T,Calvert C R,et al.Programming biomolecular self-assembly pathways.Nature,2008,451:318–322
    45 Wang Z G,Elbaz J,Remacle F,et al.All-DNA finite-state automata with finite memory.Proc Natl Acad Sci USA,2010,107:21996–22001
    46 Wang Z G,Elbaz J,Willner I.A dynamically programmed DNA transporter.Angew Chem Int Ed,2012,51:4322–4326
    47 Wickham S F J,Bath J,Katsuda Y,et al.A DNA-based molecular motor that can navigate a network of tracks.Nat Nanotechnol,2012,7:169 –173
    48 Gu H,Chao J,Xiao S J,et al.A proximity-based programmable DNA nanoscale assembly line.Nature,2010,465:202–205
    49 Li H,Carter J D,Labean T H.Nanofabrication by DNA self-assembly.Mater Today,2009,12:24–32
    50 Lund K,Liu Y,Lindsay S,et al.Self-assembling a molecular pegboard.J Am Chem Soc,2005,127:17606–17607
    51 Ke Y,Lindsay S,Chang Y,et al.Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays.Science,2008,319:180–183
    52 Ke Y,Nangreave J,Yan H,et al.Developing DNA tiles for oligonucleotide hybridization assay with higher accuracy and efficiency.Chem Commun,2008,43:5622–5624
    53 Park S H,Yin P,Liu Y,et al.Programmable DNA self-assemblies for nanoscale organization of ligands and proteins.Nano Lett,2005,5:729 –733
    54 Liu Y,Lin C X,Li H Y,et al.Protein nanoarrays—Aptamer-directed self-assembly of protein arrays on a DNA nanostructure.Angew Chem Int Ed,2005,44:4333–4338
    55 Chhabra R,Sharma J,Ke Y,et al.Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures.J Am Chem Soc,2007,129:10304–10305
    56 Rinker S,Ke Y,Liu Y,et al.Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding.Nat Nanotechnol,2008,3:418–422
    57 Fu J,Liu M,Liu Y,et al.Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures.J Am Chem Soc,2012,134:5516–5519
    58 Le J D,Pinto Y,Seeman N C,et al.DNA-templated self-assembly of metallic nanocomponent arrays on a surface.Nano Lett,2004,4:2343–2347
    59 Pinto Y Y,Le J D,Seeman N C,et al.Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding.Nano Lett,2005,5:2399–2402
    60 Zhang J P,Liu Y,Ke Y G,et al.Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface.Nano Lett,2006,6:248–251
    61 Sharma J,Chhabra R,Andersen C S,et al.Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold.J Am Chem Soc,2008,130:7820–7821
    62 Tikhomirov G,Hoogland S,Lee P E,et al.DNA-based programming of quantum dot valency,self-assembly and luminescence.Nat Nanotechnol,2011,6:485–490
    63 Chen J H,Seeman N C.Synthesis from DNA of a molecule with the connectivity of a cube.Nature,1991,350:631–633
    64 Zhang Y W,Seeman N C.Construction of a DNA-truncated octahedron.J Am Chem Soc,1994,116:1661–1669
    65 Scheffler M,Dorenbeck A,Jordan S,et al.Self-assembly of trisoligonucleotidyls:The case for nano-acetylene and nano-cyclobutadiene.Angew Chem Int Ed,1999,38:3311–3315
    66 Goodman R P,Schaap I A T,Tardin C F,et al.Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication.Science,2005,310:1661–1665
    67 Pei H,Lu N,Wen Y,et al.A DNA Nanostructure-based biomolecular probe carrier platform for electrochemical biosensing.Adv Mater,2010,22:4754–4758
    68 Pei H,Wan Y,Li J,et al.Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces.Chem Commun,2011,47:6254–6256
    69 Ge Z L,Pei H,Wang L H,et al.Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure.Sci China Chem,2011,54:1273–1276
    70 Storhoff J J,Mirkin C A.Programmed materials synthesis with DNA.Chem Rev,1999,99:1849–1862
    71 Gothelf K V,Labean T H.DNA-programmed assembly of nanostructures.Org Biomol Chem,2005,3:4023–4037
    72 Silverman A P,Kool E T.Detecting RNA and DNA with templated chemical reactions.Chem Rev,2006,106:3775–3789
    73 Li X Y,Liu D R.DNA-templated organic synthesis:Nature’s strategy for controlling chemical reactivity applied to synthetic molecules.Angew Chem Int Ed,2004,43:4848–4870
    74 Gartner Z J,Tse B N,Grubina R,et al.DNA-templated organic synthesis and selection of a library of macrocycles.Science,2004,305:1601–1605
    75 Kanan M W,Rozenman M M,Sakurai K,et al.Reaction discovery enabled by DNA-templated synthesis and in vitro selection.Nature,2004,431:545–549
    76 Chen Y,Mao C.Reprogramming DNA-directed reactions on the basis of a DNA conformational change.J Am Chem Soc,2004,126:13240–13241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700