远程拉曼光谱技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of stand-off Raman spectroscopy
  • 作者:王彦丁 ; 刘晓萌
  • 英文作者:WANG Yanding;LIU Xiaomeng;Division of Thermophysics and Process Measurements,National Institute of Metrology;
  • 关键词:光谱学 ; 拉曼远程探测 ; 拉曼光谱技术 ; 行星探测 ; 爆炸物探测
  • 英文关键词:spectroscopy;;stand-off Raman detection;;Raman spectroscopy;;planetary detection;;explosives detection
  • 中文刊名:LDXU
  • 英文刊名:Chinese Journal of Quantum Electronics
  • 机构:中国计量科学研究院热工计量科学研究所;
  • 出版日期:2019-05-15
  • 出版单位:量子电子学报
  • 年:2019
  • 期:v.36;No.188
  • 基金:国家重点研发计划,2017YFF0205306~~
  • 语种:中文;
  • 页:LDXU201903001
  • 页数:7
  • CN:03
  • ISSN:34-1163/TN
  • 分类号:3-9
摘要
远程拉曼光谱技术由显微拉曼光谱分析技术发展而来,是根据拉曼散射效应远距离探测某特定物质的技术。近年来随着对远距离爆炸物探测和对行星探测需求的提升,远程拉曼技术成为研究热点。激光器和探测器技术的提升,为远程拉曼光谱系统的研究提供了新方法。阐述了远程拉曼光谱技术的主要研究方法,介绍了该方法所使用的实验装置。在此基础上总结了近年来提出的一些新技术,讨论了各类技术方法的使用原因及其优缺点,以便探究如何针对不同的探测目的获得更良好的探测结果。展望了未来远程拉曼光谱技术的研究发展方向。
        The stand-off Raman spectroscopy is developed from the microscopic Raman spectroscopy, which is based on the Raman scattering effect. In recent years, the stand-off Raman spectroscopy has become a research hotspot with the improvement of the needs of stand-off explosives detection and planetary detection.The technology improvement of lasers and detectors provides new methods for the study of stand-off Raman spectroscopy. The main methods of remote Raman spectroscopy and the experimental devices used in this method are introduced. Some new technologies put forward in recent years are summarized, and the reasons of the technical methods choosing as well as their advantages and disadvantages are discussed, so as to explore how to obtain a better result according to the different detection purposes. The future development direction of remote Raman spectroscopy is also discussed.
引文
[1] Raman C V, Krishnan K S. The optical analogue of the Compton Effect[J]. Nature, 1928, 121(121):711.
    [2] Hirschfeld T. Range independence of signal in variable focus remote Raman spectrometry[J]. Applied Optics,1974, 13(6):1435-1437.
    [3] Angel S M, Kulp T J, Vess T M. Remote-Raman spectroscopy at intermediate ranges using low-power CW lasers[J]. Applied Spectroscopy, 1992, 46(7):1085-1091.
    [4] Aggarwal R L, Farrar L W, Polla D L. Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500 m[J]. Journal of Raman Spectroscopy,2011, 42(3):461-464.
    [5] Pettersson A, Johansson I, Wallin S, et al. Near real-time stand-off detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(4):297-306.
    [6] Moros J, Lorenzo J A, Novotny K, et al. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting[J]. Journal of Raman Spectroscopy, 2013, 44(1):121-130.
    [7] Butt N R, Nilsson M,Jakobsson A, et al. Classification of Raman spectra to detect hidden explosives[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):517-521.
    [8] Carter J C, Angel S M, Lawrencesnyder M, et al. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J].Applied Spectroscopy, 2005, 59(6):769-775.
    [9] Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2005, 61(10):2288-2298.
    [10] Sharma S K, Misra A K, Lucey P G, et al. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters[J]. Applied Spectroscopy, 2006, 60(8):871-876.
    [11] Zachhuber B,Gasser C, Chrysostom E t H, et al. Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects[J]. Analytical Chemistry, 2011, 83(24):9438-9442.
    [12] Sharma S K,Misra A K,Clegg S M,et al. Remote-Raman spectroscopic study of minerals under supercritical CO_2 relevant to venus exploration[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011, 80(1):75-81.
    [13] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 2002, 56(6):699-705.
    [14] Misra A K,Sharma S K,Chio C H,et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2005, 61(10):2281-2287.
    [15] Chung J H, Cho S G. Nanosecond gated Raman spectroscopy for standoff detection of hazardous materials[J].Bulletin of the Korean Chemical Society, 2014, 35(12):3547-3552.
    [16] Gulati K K, Gambhir V, Reddy M N. Detection of nitro-aromatic compound in soil and sand using time gated Raman spectroscopy[J]. Defence Science Journal, 2017, 67(5):588-591.
    [17] Izake E L, Cletus B, Olds W, et al. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents[J]. Talanta, 2012, 94:342-347.
    [18] Ramirez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3):693-698.
    [19] Gaft, Nagli. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008,30(11):1739-1746.
    [20] Pettersson A, Wallin S, Ostmark H, et al. Explosives standoff detection using Raman spectroscopy:From bulk towards trace detection[C]. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV[M].International Society for Optics and Photonics, 2010, 7664:76641K.
    [21] Wu M, Ray M, Hang Fung K, et al. Stand-off detection of chemicals by UV Raman spectroscopy[J]. Applied Spectroscopy, 2000, 54(6):800-806.
    [22] Loeffen P, Maskall G, Bonthron S, et al. Spatially offset Raman spectroscopy(SORS)for liquid screening[J].Proc SPIE, 2011, 8189:81890C.
    [23] Fulton J. Remote detection of explosives using Raman spectroscopy[C]. Chemical, Biological, Radiological, Nuclear, and Explosives(CBRNE)Sensing XII[M]. International Society for Optics and Photonics, 2011, 8018:80181A.
    [24] Hopkins A J, Cooper J L, Profeta L T M, et al. Portable deep-ultraviolet(DUV)Raman for standoff detection[J]. Applied Spectroscopy, 2016, 70(5):861-873.
    [25] Bykov S V, Mao M, Gares K L, et al. Compact solid-state 213 nm laser enables standoff deep ultraviolet Raman spectrometer:Measurements of nitrate photochemistry[J]. Applied Spectroscopy, 2015, 69(8):895-901.
    [26] Chen T,Madey J M J,Price F M, et al.Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse[J]. Applied Spectroscopy, 2007, 61(6):624-629.
    [27] Zachhuber B,Ramer G,Hobro A, et al. Stand-off Raman spectroscopy:A powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives[J]. Analytical and Bioanalytical Chemistry, 2011, 400(8):2439-2447.
    [28] Misra A K,Sharma S K,Acosta T E, et al. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime[J]. Applied Spectroscopy, 2012, 66(11):1279-1285.
    [29] Hokr B H, Bixler J N, Noojin G D, et al. Single-shot stand-off chemical identification of powders using random Raman lasing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):12320-12324.
    [30] Gomer N R, Gordon C M, Lucey P,et al. Raman spectroscopy using a spatial heterodyne spectrometer:Proof of concept[J]. Applied Spectroscopy, 2011, 65(8):849-857.
    [31] Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Applied Spectroscopy, 2016, 70(4):666-675.
    [32] Hu G, Xiong W, Luo H, et al. The research of spatial heterodyne Raman spectroscopy with standoff detection[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016, 36(12):3951-3957(in Chinese).
    [33] Long H, Liu H, Li Z, et al. Narrow-linewidth tunable fiber laser for spectral calibration of spatial heterodyne spectrometer[J]. Chinese Journal of Quantum Electronics(量子电子学报),2017, 34(3):339-343(in Chinese).
    [34] Lin Q, Niu G, Wang Q, et al. Combined laser-induced breakdown with Raman spectroscopy:Historical technology development and recent applications[J]. Applied Spectroscopy Reviews, 2013, 48:487-508.
    [35] Sharma S K,Misra A K,Lucey P G,et al. Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfurcontaining minerals, and minerals coated with hematite or covered with basaltic dust[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2007, 68(4):1036-1045.
    [36] Moros J, Laserna J J. New Ramanlaser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform[J]. Analytical Chemistry, 2011, 83(16):6275-6285.
    [37] Sharma S K. New trends in telescopic remote Raman spectroscopic instrumentation[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2007, 68(4):1008-1022.
    [38] Gasda P J, Acostamaeda T E, Lucey P G, et al. Next generation laser-based standoff spectroscopy techniques for Mars exploration[J]. Applied Spectroscopy, 2015, 69(2):173-192.
    [39] Acosta-Maeda T E, Misra A K, Muzangwa L G, et al. Remote Raman measurements of minerals, organics, and inorganics at 430 m range[J]. Applied Optics, 2016, 55(36):10283-10289.
    [40] Moros J, Lorenzo J A, Laserna J J. Standoff detection of explosives:Critical comparison for ensuing options on Raman spectroscopy LIBS sensor fusion[J]. Analytical and Bioanalytical Chemistry, 2011, 400(10):3353-3365.
    [41] Measures R M. Laser Remote Sensing:Fundamentals and Applications[M]. Malabar, Fla:Krieger Publishing Company, 1992.
    [42] Bremer M T, Dantus M. Detecting micro-particles of explosives at ten meters using selective stimulated Raman scattering[C]. CLEO:2014, Optical Society of America, 2014:JTh2A.5.
    [43] Svanqvist M, Glimtoft M, Agren M, et al. Stand-off detection of explosives and precursors using compressive sensing Raman spectroscopy[C]. Chemical, Biological, Radiological, Nuclear, and Explosives(CBRNE)Sensing XVII[M]. International Society for Optics and Photonics, 2016, 9824:98240C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700