DNA功能化金纳米及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of DNA functionalized gold nanoparticles
  • 作者:李久兴 ; 刘如迪 ; 张益聪 ; 祝冰青 ; 姚秀洁 ; 林晖 ; 周雷激 ; 朱志 ; 杨朝勇
  • 英文作者:Jiuxing Li;Rudi Liu;Yicong Zhang;Bingqing Zhu;Xiujie Yao;Hui Lin;Leiji Zhou;Zhi Zhu;Chaoyong Yang;State Key Laboratory of Physical Chemistry of Solid Surfaces; Key Laboratory of Spectrochemical Analysis & Instrumentation, Ministry of Education; College of Chemistry and Chemical Engineering, Xiamen University;
  • 关键词:金纳米 ; DNA ; 检测 ; 组装 ; 载药
  • 英文关键词:gold nanoparticles,DNA,detection,assembly,drug delivery
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:固体表面物理化学国家重点实验室;谱学分析与仪器教育部重点实验室;厦门大学化学化工学院;
  • 出版日期:2015-11-20
  • 出版单位:中国科学:化学
  • 年:2015
  • 期:v.45
  • 基金:国家重点基础研究发展计划(2010CB732402,2013CB933703);; 国家自然科学基金(91313302,21205100,21275122);; 国家杰出青年科学基金(21325522)的资助
  • 语种:中文;
  • 页:JBXK201511004
  • 页数:33
  • CN:11
  • ISSN:11-5838/O6
  • 分类号:30-62
摘要
金纳米颗粒拥有独特的光学和电学性质,被广泛地应用于分析检测、催化和生物医学等领域.通过改变尺寸和形状能够可控地调节金纳米颗粒的等离子体共振吸收峰,进而改变金纳米颗粒的光学和电学特性.而在金纳米表面修饰DNA,使金纳米颗粒具有DNA的特异性识别能力和可寻址能力,则能够有效地扩展金纳米颗粒在纳米组装、环境监测、疾病诊断、药物运输和纳米颗粒合成方面的应用.本文系统总结了不同大小金纳米颗粒的合成方法,探讨如何在金纳米颗粒上快速修饰DNA,研究了影响金纳米颗粒表面DNA的修饰密度、功能及稳定性的因素,并描述了DNA功能化的金纳米颗粒在检测、组装、载药和纳米颗粒合成中的应用.本文将进一步加深人们对DNA功能化金纳米颗粒的制备、性质及应用的了解,为DNA功能化金纳米颗粒的研究提供指导.
        Gold nanoparticles have been widely applied to different natural sciences due to its unique optical and electrical properties. It is easy to control the size and shape of gold nanoparticles to adjust the absorption peak of gold nanoparticles and change the optical and electrical properties. When gold nanoparticles are functionalized with DNA, they are endowed with the recognition ability and addressability of DNA, and it further widens the applications of gold nanoparticles in nanoparticle assembly, environmental monitoring, disease diagnosis, drug delivery, and nanoparticle synthesis. First, this review systematically summarized the synthesis of gold nanoparticles with different sizes. Second, it discussed how to rapidly functionalize gold nanoparticles with DNA. Moreover, it studied the factors that affect the density, function, and stability of DNA on gold nanoparticle surface. Finally, it described the applications of gold nanoparticles in detection, nanoparticle assembly, drug delivery, and nanoparticle synthesis. This review would promote understanding of the preparations, properties, and applications of DNA functionalized gold nanoparticles, and would provide guidance for the research of DNA functionalized gold nanoparticles.
引文
1 Zanoli LM,D’Agata R,Spoto G.Functionalized gold nanoparticles for ultrasensitive DNA detection.Anal Bioanal Chem,2012,402:1759–1771
    2 Faraday M.The bakerian lecture:experimental relations of gold(and other metals)to light.Philos Trans R Soc London,1857,147:145 –181
    3 Mie G.Beitr?ge zur optik trüber medien,speziell kolloidaler metall?sungen.Ann Phys,1908,330:377–445
    4 Grzelczak M,Jorge PJ,Mulvaney P,Liz-Marzan LM.Shape control in gold nanoparticle synthesis.Chem Soc Rev,2008,37:1783–1791
    5 Eustis S,El-Sayed MA.Why gold nanoparticles are more precious than pretty gold:noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chem Soc Rev,2006,35:209–217
    6 Niemeyer CM.Nanoparticles,proteins,and nucleic acids:biotechnology meets materials science.Angew Chem Int Ed,2001,40:4128–4158
    7 Teichroeb JH,Forrest JA,Ngai V,Jones LW.Anomalous thermal denaturing of proteins adsorbed to nanoparticles.Eur Phys J E,2006,21:19 –24
    8 Aslan K,Lakowicz JR,Geddes CD.Plasmon light scattering in biology and medicine:new sensing approaches,visions and perspectives.Curr Opin Chem Biol,2005,9:538–544
    9 Aroca RF,Alvarez Puebla RA,Pieczonka N,Sanchez Cortez S,Garcia Ramos JV.Surface-enhanced raman scattering on colloidal nanostructures.Adv Colloid Interface Sci,2005,116:45–61
    10 Geddes C,Lakowicz J.Editorial:metal-enhanced fluorescence.J Fluoresc,2002,12:121–129
    11 Park SJ,Taton TA,Mirkin CA.Array-based electrical detection of DNA with nanoparticle probes.Science,2002,295:1503–1506
    12 Hill HD,Macfarlane RJ,Senesi AJ,Lee B,Park SY,Mirkin CA.Controlling the lattice parameters of gold nanoparticle fcc crystals with duplex DNA linkers.Nano Lett,2008,8:2341–2344
    13 Cui L,Ke G,Zhang WY,Yang CJ.A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification.Biosens Bioelectron,2011,26:2796–2800
    14 Pan W,Yang H,Zhang T,Li Y,Li N,Tang B.Dual-targeted nanocarrier based on cell surface receptor and intracellular mrna:an effective strategy for cancer cell imaging and therapy.Anal Chem,2013,85:6930–6935
    15 Han G,You CC,Kim BJ,Turingan RS,Forbes NS,Martin CT,Rotello VM.Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles.Angew Chem Int Ed,2006,45:3165–3169
    16 Huang X,El-Sayed MA.Gold nanoparticles:optical properties and implementations in cancer diagnosis and photothermal therapy.J Adv Res,2010,1:13–28
    17 Link S,El-Sayed MA.Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles.J Phys Chem B,1999,103 :4212–4217
    18 Kreibig U,Fragstein CV.The limitation of electron mean free path in small silver particles.Zeitschrift für Physik,1969,224:307–323
    19 Sardar R,Funston AM,Mulvaney P,Murray RW.Gold nanoparticles:past,present,and future.Langmuir,2009,25:13840–13851
    20 Jain PK,Lee KS,El-Sayed IH,El-Sayed MA.Calculated absorption and scattering properties of gold nanoparticles of different size,shape,and composition:?applications in biological imaging and biomedicine.J Phys Chem B,2006,110:7238–7248
    21 Lee KS,El-Sayed MA.Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio,size,end-cap shape,and medium refractive index.J Phys Chem B,2005,109:20331–20338
    22 Guo S,Wang E.Synthesis and electrochemical applications of gold nanoparticles.Anal Chim Acta,2007,598:181–192
    23 Della Pina C,Falletta E,Prati L,Rossi M.Selective oxidation using gold.Chem Soc Rev,2008,37:2077–2095
    24 Dykman L,Khlebtsov N.Gold nanoparticles in biomedical applications:recent advances and perspectives.Chem Soc Rev,2012,41:2256–2282
    25 Khlebtsov N,Dykman L.Biodistribution and toxicity of engineered gold nanoparticles:a review of in vitro and in vivo studies.Chem Soc Rev,2011,40:1647–1671
    26 Turkevich J,Stevenson PC,Hillier J.A study of the nucleation and growth processes in the synthesis of colloidal gold.Discuss Faraday Soc,1951,11:55–75
    27 Frens G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nat Phys Sci,1973,241:20–22
    28 Jana NR,Gearheart L,Murphy CJ.Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles.Chem Mater,2001,13:2313–2322
    29 Ji X,Song X,Li J,Bai Y,Yang W,Peng X.Size control of gold nanocrystals in citrate reduction:?the third role of citrate.J Am Chem Soc,2007,129:13939–13948
    30 Isaac OJ,Romero FM,Bastús NG,Puntes V.Small gold nanoparticles synthesized with sodium citrate and heavy water:insights into the reaction mechanism.J Phys Chem C,2010,114:1800–1804
    31 Biggs S,Mulvaney P,Zukoski CF,Grieser F.Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy.J Am Chem Soc,1994,116:9150–9157
    32 Gao C,Vuong J,Zhang Q,Liu Y,Yin Y.One-step seeded growth of au nanoparticles with widely tunable sizes.Nanoscale,2012,4:2875–2878
    33 Brown KR,Walter DG,Natan MJ.Seeding of colloidal au nanoparticle solutions.2.Improved control of particle size and shape.Chem Mater,2000,12:306–313
    34 Jana NR,Gearheart L,Murphy CJ.Seeding growth for size control of 5–40 nm diameter gold nanoparticles.Langmuir,2001,17:6782–6786
    35 Jessica RF,Jorge PJ,García de Abajo FJ,Liz-Marzán LM.Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes.Langmuir,2006,22:7007–7010
    36 Sergio GG,Hubert F,Testard F,Andrés GM,Grillo I,Liz-Marzán LM,Spalla O.Surfactant(bi)layers on gold nanorods.Langmuir,2012,28 :1453–1459
    37 Perrault SD,Chan WCW.Synthesis and surface modification of highly monodispersed,spherical gold nanoparticles of 50-200 nm.J Am Chem Soc,2009,131:17042–17043
    38 Ziegler C,Eychmüller A.Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm.J Phys Chem C,2011,115:4502–4506
    39 Bastús NG,Comenge J,Puntes V.Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm:size focusing versus ostwald ripening.Langmuir,2011,27:11098–11105
    40 Nykypanchuk D,Maye MM,van der Lelie D,Gang O.DNA-guided crystallization of colloidal nanoparticles.Nature,2008,451:549–552
    41 Mirkin CA,Letsinger RL,Mucic RC,Storhoff JJ.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature,1996,382:607–609
    42 Maxwell DJ,Taylor JR,Nie S.Self-assembled nanoparticle probes for recognition and detection of biomolecules.J Am Chem Soc,2002,124 :9606–9612
    43 Yan J,Hu C,Wang P,Zhao B,Ouyang X,Zhou J,Liu R,He D,Fan C,Song S.Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery.Angew Chem Int Ed,2015,54:2431–2435
    44 Lim DK,Jeon KS,Hwang JH,Kim H,Kwon S,Suh YD,Nam JM.Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.Nat Nanotechnol,2011,6:452–460
    45 Shen J,Xu L,Wang C,Pei H,Tai R,Song S,Huang Q,Fan C,Chen G.Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures.Angew Chem Int Ed,2014,53:8338–8342
    46 Mucic RC,Storhoff JJ,Mirkin CA,Letsinger RL.DNA-directed synthesis of binary nanoparticle network materials.J Am Chem Soc,1998,120 :12674–12675
    47 Zhang X,Servos MR,Liu J.Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a p H-assisted and surfactant-free route.J Am Chem Soc,2012,134:7266–7269
    48 Demers LM,Mirkin CA,Mucic RC,Reynolds RA,Letsinger RL,Elghanian R,Viswanadham G.A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles.Anal Chem,2000,72:5535–5541
    49 Dougan JA,Karlsson C,Smith WE,Graham D.Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides.Nucleic Acids Res,2007,35:3668–3675
    50 Demers LM,Oestblom M,Zhang H,Jang NH,Liedberg B,Mirkin CA.Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold.J Am Chem Soc,2002,124:11248–11249
    51 Sandstroem P,Boncheva M,Kerman B.Nonspecific and thiol-specific binding of DNA to gold nanoparticles.Langmuir,2003,19:7537–7543
    52 Cardenas M,Barauskas J,Schillen K,Brennan JL,Brust M,Nylander T.Thiol-specific and nonspecific interactions between DNA and gold nanoparticles.Langmuir,2006,22:3294–3299
    53 Brown KA,Park S,Kimberly HS.Nucleotide-surface interactions in DNA-modified Au-nanoparticle conjugates:sequence effects on reactivity and hybridization.J Phys Chem C,2008,112:7517–7521
    54 Zhang X,Liu B,Dave N,Servos MR,Liu J.Instantaneous attachment of an ultrahigh density of nonthiolated DNA to gold nanoparticles and its applications.Langmuir,2012,28:17053–17060
    55 Storhoff JJ,Elghanian R,Mirkin CA,Letsinger RL.Sequence-dependent stability of DNA-modified gold nanoparticles.Langmuir,2002,18 :6666–6670
    56 Gourishankar A,Shukla S,Ganesh KN,Sastry M.Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles.J Am Chem Soc,2004,126:13186–13187
    57 Li H,Rothberg L.Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles.Proc Natl Acad Sci USA,2004,101:14036–14039
    58 Zhang X,Servos MR,Liu J.Surface science of DNA adsorption onto citrate-capped gold nanoparticles.Langmuir,2012,28:3896–3902
    59 Li H,Rothberg LJ.Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction.J Am Chem Soc,2004,126:10958–10961
    60 Nelson EM,Rothberg LJ.Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution.Langmuir,2011,27:1770–1777
    61 Sowerby SJ,Cohn CA,Heckl WM,Holm NG.Differential adsorption of nucleic acid bases:relevance to the origin of life.Proc Natl Acad Sci USA,2001,98:820–822
    62 Liu J.Adsorption of DNA onto gold nanoparticles and graphene oxide:surface science and applications.PCCP,2012,14:10485–10496
    63 Jang NH.The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS.Bull Korean Chem Soc,2002,23:1790–1800
    64 Hurst SJ,Lytton Jean AKR,Mirkin CA.Maximizing DNA loading on a range of gold nanoparticle sizes.Anal Chem,2006,78:8313–8318
    65 Liu J,Lu Y.Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes.Nat Protoc,2006,1:246 –252
    66 Zhang J,Song S,Wang L,Pan D,Fan C.A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA.Nat Protoc,2007,2:2888–2895
    67 Jin R,Wu G,Li Z,Mirkin CA,Schatz GC.What controls the melting properties of DNA-linked gold nanoparticle assemblies?J Am Chem Soc,2003,125:1643–1654
    68 Liu J,Lu Y.Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric Pb2+detection.J Am Chem Soc,2004,126:12298–12305
    69 Zu Y,Gao Z.Facile and controllable loading of single-stranded DNA on gold nanoparticles.Anal Chem,2009,81:8523–8528
    70 Xu S,Yuan H,Xu A,Wang J,Wu L.Rapid synthesis of stable and functional conjugates of DNA/gold nanoparticles mediated by Tween 80 .Langmuir,2011,27:13629–13634
    71 Bhatt N,Huang PJJ,Dave N,Liu J.Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents.Langmuir,2011,27:6132–6137
    72 Lim DK,Kim IJ,Nam JM.DNA-embedded Au/Ag core-shell nanoparticles.Chem Commun,2008:5312–5314
    73 Zhang X,Huang PJJ,Servos MR,Liu J.Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.Langmuir,2012,28:14330–14337
    74 Zhang X,Gouriye T,Goeken K,Servos MR,Gill R,Liu J.Toward fast and quantitative modification of large gold nanoparticles by thiolated DNA:scaling of nanoscale forces,kinetics,and the need for thiol reduction.J Phys Chem C,2013,117:15677–15684
    75 Li J,Zhu B,Yao X,Zhang Y,Zhu Z,Tu S,Jia S,Liu R,Kang H,Yang CJ.Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.ACS Appl Mater Interf,2014,6:16800–16807
    76 Hill HD,Millstone JE,Banholzer MJ,Mirkin CA.The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles.ACS Nano,2009,3:418–424
    77 Zanchet D,Micheel CM,Parak WJ,Gerion D,Alivisatos AP.Electrophoretic isolation of discrete au nanocrystal/DNA conjugates.Nano Lett,2001,1:32–35
    78 Claridge SA,Liang HW,Basu SR,Fréchet JMJ,Alivisatos AP.Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications.Nano Lett,2008,8:1202–1206
    79 Borovok N,Gillon E,Kotlyar A.Synthesis and assembly of conjugates bearing specific numbers of DNA strands per gold nanoparticle.Bioconjugate Chem,2012,23:916–922
    80 Zhang T,Dong Y,Sun Y,Chen P,Yang Y,Zhou C,Xu L,Yang Z,Liu D.DNA bimodified gold nanoparticles.Langmuir,2012,28:1966–1970
    81 Wen Y,Mc Laughlin CK,Lo PK,Yang H,Sleiman HF.Stable gold nanoparticle conjugation to internal DNA positions:facile generation of discrete gold nanoparticle-DNA assemblies.Bioconjugate Chem,2010,21:1413–1416
    82 Kim EY,Stanton J,Vega RA,Kunstman KJ,Mirkin CA,Wolinsky SM.A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles.Nucleic Acids Res,2006,34:54–60
    83 Falabella JB,Cho TJ,Ripple DC,Hackley VA,Tarlov MJ.Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering.Langmuir,2010,26:12740–12747
    84 Liu YC,Li YJ,Huang CC.Information derived from cluster ions from DNA-modified gold nanoparticles under laser desorption/ionization:analysis of coverage,structure,and single-nucleotide polymorphism.Anal Chem,2013,85:1021–1028
    85 Paliwoda RE,Li F,Reid MS,Lin Y,Le XC.Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.Anal Chem,2014,86:6138–6143
    86 Poon L,Zandberg W,Hsiao D,Erno Z,Sen D,Gates BD,Branda NR.Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au–S bond breaking.ACS Nano,2010,4:6395–6403
    87 Lytton JAKR,Mirkin CA.A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes.J Am Chem Soc,2005,127:12754–12755
    88 Chen C,Wang W,Ge J,Zhao XS.Kinetics and thermodynamics of DNA hybridization on gold nanoparticles.Nucleic Acids Res,2009,37:3756–3765
    89 Herne TM,Tarlov MJ.Characterization of DNA probes immobilized on gold surfaces.J Am Chem Soc,1997,119:8916–8920
    90 Kiang CH.Phase transition of DNA-linked gold nanoparticles.Phys A,2003,321:164–169
    91 Akamatsu K,Kimura M,Shibata Y,Nakano S,Miyoshi D,Nawafune H,Sugimoto N.A DNA duplex with extremely enhanced thermal stability based on controlled immobilization on gold nanoparticles.Nano Lett,2006,6:491–495
    92 Zaki A,Dave N,Liu J.Amplifying the macromolecular crowding effect using nanoparticles.J Am Chem Soc,2012,134:35–38
    93 Xie X,Xu W,Liu X.Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.Acc Chem Res,2012,45 :1511–1520
    94 Elghanian R,Storhoff JJ,Mucic RC,Letsinger RL,Mirkin CA.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science,1997,277:1078–1081
    95 Fong KE,Yung LYL.Head-to-tail:hybridization and single-mismatch discrimination in metallic nanoparticle-DNA assembly.RSC Adv,2013,3:6076–6084
    96 Weigum SE,Castellanos GA,White AC Jr,Richards KR.Amplification-free detection of cryptosporidium parvum nucleic acids with the use of DNA/RNA-directed gold nanoparticle assemblies.J Parasitol,2013,99:923–926
    97 Han MS,Lytton Jean AKR,Mirkin CA.A gold nanoparticle based approach for screening triplex DNA binders.J Am Chem Soc,2006,128:4954–4955
    98 Seela F,Budow S.p H-dependent assembly of DNA-gold nanoparticles based on the i-motif.Nucleos Nucleot Nucleic Acids,2007,26:755 –759
    99 Song G,Chen C,Qu X,Miyoshi D,Ren J,Sugimoto N.Small-molecule-directed assembly:a gold nanoparticle-based strategy for screening of homo-adenine DNA duplex binders.Adv Mater,2008,20:706–710
    100 Xue X,Wang F,Liu X.One-step,room temperature,colorimetric detection of mercury(Hg2+)using DNA/nanoparticle conjugates.J Am Chem Soc,2008,130:3244–3245
    101 Feng DQ,Liu GL,Zheng WJ,Liu J,Chen TF,Li D.A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles.Chem Commun,2011,47:8557–8559
    102 Ma Y,Guo Y,Li J,Guan J,Xu L,Yang W.Poly(l-lysine)-induced aggregation of single-strand oligo-DNA-modified gold nanoparticles.Chem-Eur J,2009,15:13135–13140
    103 Zhang JQ,Wang YS,He Y,Jiang T,Yang HM,Tan X,Kang RH,Yuan YK,Shi LF.Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer.Anal Biochem,2010,397:212–217
    104 Miao XM,Xiong C,Wang WW,Ling LS,Shuai XT.Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles.Chem-Eur J,2011,17:11230–11236
    105 Feng DQ,Liu G,Zheng W,Chen T,Li D.A new light-scattering sensor for screening G-quadruplex stabilizers based on DNA-folding-mediated assembly of gold nanoparticles.J Mater Chem B,2013,1:3057–3063
    106 Mc Kenzie F,Faulds K,Graham D.Sequence-specific DNA detection using high-affinity lna-functionalized gold nanoparticles.Small,2007,3:1866–1868
    107 Zu Y,Ting AL,Gao Z.Visualizing low-level point mutations:enzyme-like selectivity offered by nanoparticle probes.Small,2011,7:306 –310
    108 Zhang Y,Hu J,Zhang CY.Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay.Anal Chem,2012,84:9544–9549
    109 Shen W,Deng H,Gao Z.Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA.J Am Chem Soc,2012,134:14678–14681
    110 Wong JKF,Yip SP,Lee TMH.Silica-modified oligonucleotide-gold nanoparticle conjugate enables closed-tube colorimetric polymerase chain reaction.Small,2012,8:214–219
    111 Ma C,Wang W,Li Z,Cao L,Wang Q.Simple colorimetric DNA detection based on hairpin assembly reaction and target-catalytic circuits for signal amplification.Anal Biochem,2012,429:99–102
    112 Xu W,Xie X,Li D,Yang Z,Li T,Liu X.Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification(NEANA).Small,2012,8:1846–1850
    113 Zhao W,Chiuman W,Brook MA,Li Y.Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation.Chem Bio Chem,2007,8:727–731
    114 Zhao W,Lam JCF,Chiuman W,Brook MA,Li Y.Enzymatic cleavage of nucleic acids on gold nanoparticles:a generic platform for facile colorimetric biosensors.Small,2008,4:810–816
    115 Ogawa A.Rna aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand.Bioorg Med Chem Lett,2011,21:155 –159
    116 Gao ZF,Song WW,Luo HQ,Li NB.Detection of mercury ions(II)based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance rayleigh scattering method.Biosens Bioelectron,2015,65:360–365
    117 Song J,Li Z,Cheng Y,Liu C.Self-aggregation of oligonucleotide-functionalized gold nanoparticles and its applications for highly sensitive detection of DNA.Chem Commun,2010,46:5548–5550
    118 Liu J,Lu Y.A colorimetric lead biosensor using dnazyme-directed assembly of gold nanoparticles.J Am Chem Soc,2003,125:6642–6643
    119 Liu J,Lu Y.Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor.Anal Chem,2004,76:1627–1632
    120 Liu J,Lu Y.Design of asymmetric dnazymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli.Org Biomol Chem,2006,4:3435–3441
    121 Liu J,Lu Y.Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing.J Am Chem Soc,2005,127:12677–12683
    122 Liu J,Lu Y.Colorimetric biosensors based on dnazyme-assembled gold nanoparticles.J Fluoresc,2004,14:343–354
    123 Liu J,Lu Y.Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors.J Am Chem Soc,2007,129:8634–8643
    124 Xu X,Han MS,Mirkin CA.A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition.Angew Chem Int Ed,2007,46:3468–3470
    125 Lee JS,Ulmann PA,Han MS,Mirkin CA.A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine.Nano Lett,2008,8:529–533
    126 Ou LJ,Jin PY,Chu X,Jiang JH,Yu RQ.Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor.Anal Chem,2010,82:6015–6024
    127 Liu ZF,Ge J,Zhao XS.Quantitative detection of adenosine in urine using silver enhancement of aptamer-gold nanoparticle aggregation and progressive dilution.Chem Commun,2011,47:4956–4958
    128 Chavez JL,Lyon W,Kelley Loughnane N,Stone MO.Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates.Biosens Bioelectron,2010,26:23–28
    129 Zhou Z,Wei W,Zhang Y,Liu S.DNA-responsive disassembly of aunp aggregates:influence of nonbase-paired regions and colorimetric DNA detection by exonuclease iii aided amplification.J Mater Chem B,2013,1:2851–2858
    130 Sato K,Hosokawa K,Maeda M.Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization.J Am Chem Soc,2003,125:8102–8103
    131 Zhao W,Chiuman W,Lam JCF,Mc Manus SA,Chen W,Cui Y,Pelton R,Brook MA,Li Y.DNA aptamer folding on gold nanoparticles:from colloid chemistry to biosensors.J Am Chem Soc,2008,130:3610–3618
    132 Chen C,Zhao C,Yang X,Ren J,Qu X.Enzymatic manipulation of DNA-modified gold nanoparticles for screening G-quadruplex ligands and evaluating selectivities.Adv Mater,2010,22:389–393
    133 Wu ZS,Lu H,Liu X,Hu R,Zhou H,Shen G,Yu RQ.Inhibitory effect of target binding on hairpin aptamer sticky-end pairing-induced gold nanoparticle assembly for light-up colorimetric protein assay.Anal Chem,2010,82:3890–3898
    134 Wu J,Li L,Zhu D,He P,Fang Y,Cheng G.Colorimetric assay for mercury(II)based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles.Anal Chim Acta,2011,694:115–119
    135 Liu G,Zhang Q,Qian Y,Yu S,Li F.Highly specific sensing of silver based on aggregation of G-quadruplex-capped gold nanoparticles.Anal Methods,2013,5:648–652
    136 Wu Z,Wu ZK,Tang H,Tang LJ,Jiang JH.Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay.Anal Chem,2013,85:4376–4383
    137 Yortyot SN,Jaroenram W,Sriurairatana S,Suebsing R,Kiatpathomchai W.Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification.Mol Cell Probes,2013,27:71 –79
    138 Mao X,Ma Y,Zhang A,Zhang L,Zeng L,Liu G.Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.Anal Chem,2009,81:1660–1668
    139 Li Z,Wang Y,Wang J,Tang Z,Pounds JG,Lin Y.Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip.Anal Chem,2010,82:7008–7014
    140 Liao JY,Li H.Lateral flow immunodipstick for visual detection of aflatoxin b1 in food using immuno-nanoparticles composed of a silver core and a gold shell.Microchim.Acta,2010,171:289–295
    141 Glynou K,Ioannou PC,Christopoulos TK,Syriopoulou V.Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization.Anal Chem,2003,75:4155–4160
    142 Toubanaki DK,Christopoulos TK,Ioannou PC,Gravanis A.Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction:application to pharmacogenetic analysis.Hum Mutat,2008,29:1071–1078
    143 Xu H,Mao X,Zeng Q,Wang S,Kawde AN,Liu G.Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis.Anal Chem,2009,81:669–675
    144 Fang Z,Huang J,Lie P,Xiao Z,Ouyang C,Wu Q,Wu Y,Liu G,Zeng L.Lateral flow nucleic acid biosensor for Cu2+detection in aqueous solution with high sensitivity and selectivity.Chem Commun,2010,46:9043–9045
    145 He Y,Zhang X,Zhang S,Kris MKL,Man FC,Kawde AN,Liu G.Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles.Biosens Bioelectron,2012,34:37–43
    146 Yang F,Duan J,Li M,Wang Z,Guo Z.Visual and on-site detection of mercury(II)ions on lateral flow strips using DNA-functionalized gold nanoparticles.Anal Sci,2012,28:333–333
    147 He Y,Zeng K,Gurung AS,Baloda M,Xu H,Zhang X,Liu G.Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles.Anal Chem,2010,82:7169–7177
    148 He Y,Zhang X,Zhang S,Baloda M,Gurung AS,Zeng K,Liu G.Visual detection of Hg2+in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes.Biosens Bioelectron,2011,26:4464–4470
    149 Lie P,Liu J,Fang Z,Dun B,Zeng L.A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity.Chem Commun,2012,48:236–238
    150 Taton TA,Mirkin CA,Letsinger RL.Scanometric DNA array detection with nanoparticle probes.Science,2000,289:1757–1760
    151 Nam JM,Park SJ,Mirkin CA.Bio-barcodes based on oligonucleotide-modified nanoparticles.J Am Chem Soc,2002,124:3820–3821
    152 Lee JS,Mirkin CA.Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles.Anal Chem,2008,80:6805–6808
    153 Lee JH,Domaille DW,Cha JN.Amplified protein detection and identification through DNA-conjugated m13 bacteriophage.ACS Nano,2012,6:5621–5626
    154 Cho H,Jung J,Chung BH.Scanometric analysis of DNA microarrays using DNA intercalator-conjugated gold nanoparticles.Chem Commun,2012,48:7601–7603
    155 Lytton Jean AKR,Han MS,Mirkin CA.Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles.Anal Chem,2007,79:6037–6041
    156 Baeissa A,Moghimi N,Liu J.Hydrogel porosity controlling DNA-directed immobilization of gold nanoparticles revealed by DNA melting and scanning helium ion microscopy.RSC Adv,2012,2:2981–2987
    157 Lin L,Liu Y,Tang L,Li J.Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy.Analyst,2011,136:4732–4737
    158 Nam JM,Thaxton CS,Mirkin CA.Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins.Science,2003,301:1884–1886
    159 Zheng G,Daniel WL,Mirkin CA.A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates.J Am Chem Soc,2008,130:9644–9645
    160 Stoeva SI,Lee JS,Thaxton CS,Mirkin CA.Multiplexed DNA detection with biobarcoded nanoparticle probes.Angew Chem Int Ed,2006,45 :3303–3306
    161 Jayagopal A,Halfpenny KC,Perez JW,Wright DW.Hairpin DNA-functionalized gold colloids for the imaging of mrna in live cells.J Am Chem Soc,2010,132:9789–9796
    162 Degliangeli F,Kshirsagar P,Brunetti V,Pompa PP,Fiammengo R.Absolute and direct microrna quantification using DNA-gold nanoparticle probes.J Am Chem Soc,2014,136:2264–2267
    163 Leng X,Huang D,Niu C,Wang X,Zeng G,Niu Q.Time-gated fluorescence sensor for silver ions using mn:Cds/Zns quantum dots/DNA/gold nanoparticle complexes.Anal Methods,2014,6:6265–6270
    164 Tang B,Zhang N,Chen Z,Xu K,Zhuo L,Liguo A,Yang G.Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles.Chem-Eur J,2008,14:522–528
    165 Qiao Y,Deng J,Jin Y,Chen G,Wang L.Identifying G-quadruplex-binding ligands using DNA-functionalized gold nanoparticles.Analyst,2012,137:1663–1668
    166 Xiao Y,Dane KY,Uzawa T,Csordas A,Qian J,Soh HT,Daugherty PS,Lagally ET,Heeger AJ,Plaxco KW.Detection of telomerase activity in high concentration of cell lysates using primer-modified gold nanoparticles.J Am Chem Soc,2010,132:15299–15307
    167 Yu LH,Chen YF.Concentration-dependent thermophoretic accumulation for the detection of DNA using DNA-functionalized nanoparticles.Anal Chem,2015,87:2845–2851
    168 Ebrahimi S,Akhlaghi Y,Kompany Zareh M,Rinnan A.Nucleic acid based fluorescent nanothermometers.ACS Nano,2014,8:10372–10382
    169 Zhang C,Wu L,Yang J,Liu S,Xu J.A molecular logical switching beacon controlled by thiolated DNA signals.Chem Commun,2013,49:11308–11310
    170 Song S,Liang Z,Zhang J,Wang L,Li G,Fan C.Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis.Angew Chem Int Ed,2009,48:8670–8674
    171 Kuang H,Zhao S,Chen W,Ma W,Yong Q,Xu L,Wang L,Xu C.Rapid DNA detection by interface pcr on nanoparticles.Biosens Bioelectron,2011,26:2495–2499
    172 Huang Y,Zhao S,Chen ZF,Liu YC,Liang H.Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization.Chem Commun,2011,47:4763–4765
    173 Seo SH,Lee YR,Ho Jeon J,Hwang YR,Park PG,Ahn DR,Han KC,Rhie GE,Hong KJ.Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay.Biosens Bioelectron,2015,64:69–73
    174 Kerman K,Saito M,Morita Y,Takamura Y,Ozsoz M,Tamiya E.Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles.Anal Chem,2004,76:1877–1884
    175 Zhu Z,Su Y,Li J,Li D,Zhang J,Song S,Zhao Y,Li G,Fan C.Highly sensitive electrochemical sensor for mercury(II)ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.Anal Chem,2009,81:7660–7666
    176 Shen L,Chen Z,Li Y,He S,Xie S,Xu X,Liang Z,Meng X,Li Q,Zhu Z,Li M,Le XC,Shao Y.Electrochemical dnazyme sensor for lead based on amplification of DNA-Au bio-bar codes.Anal Chem,2008,80:6323–6328
    177 Zhang S,Xia J,Li X.Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified au nanoparticles.Anal Chem,2008,80:8382–8388
    178 Liang J,Chen Z,Guo L,Li L.Electrochemical sensing of l-histidine based on structure-switching dnazymes and gold nanoparticle-graphene nanosheet composites.Chem Commun,2011,47:5476–5478
    179 Jing X,Cao X,Wang L,Lan T,Li Y,Xie G.DNA-aunps based signal amplification for highly sensitive detection of DNA methylation,methyltransferase activity and inhibitor screening.Biosens Bioelectron,2014,58:40–47
    180 Zhou J,Lai W,Zhuang J,Tang J,Tang D.Nanogold-functionalized dnazyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay.ACS Appl Mater Interfaces,2013,5:2773–2781
    181 Wang WJ,Li JJ,Rui K,Gai PP,Zhang JR,Zhu JJ.Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification.Anal Chem,2015,87:3019–3026
    182 Cui HF,Xu TB,Sun YL,Zhou AW,Cui YH,Liu W,Luong JHT.Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection.Anal Chem,2015,87:1358–1365
    183 Nam EJ,Kim EJ,Wark AW,Rho S,Kim H,Lee HJ.Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions.Analyst,2012,137:2011–2016
    184 Han S,Lin J,Satjapipat M,Baca AJ,Zhou F.A three-dimensional heterogeneous DNA sensing surface formed by attaching oligodeoxynucleotide-capped gold nanoparticles onto a gold-coated quartz crystal.Chem Commun,2001:609–610
    185 Sendroiu IE,Gifford LK,Luptak A,Corn RM.Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced spr imaging.J Am Chem Soc,2011,133:4271–4273
    186 Picciolini S,Mehn D,Morasso C,Vanna R,Bedoni M,Pellacani P,Marchesini G,Valsesia A,Prosperi D,Tresoldi C,Ciceri F,Gramatica F.Polymer nanopillar-gold arrays as surface-enhanced raman spectroscopy substrate for the simultaneous detection of multiple genes.ACS Nano,2014,8:10496–10506
    187 Demers LM,Park SJ,Taton TA,Li Z,Mirkin CA.Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA.Angew Chem Int Ed,2001,40:3071–3
    188 Chiu WJ,Ling TK,Chiang HP,Lin HJ,Huang CC.Monitoring cluster ions derived from aptamer-modified gold nanofilms under laser desorption/ionization for the detection of circulating tumor cells.ACS Appl Mater Interfaces,2015:8622–8630
    189 Zhou WH,Zhu CL,Lu CH,Guo X,Chen F,Yang HH,Wang X.Amplified detection of protein cancer biomarkers using dnazyme functionalized nanoprobes.Chem Commun,2009:6845–6847
    190 Graham D,Thompson DG,Smith WE,Faulds K.Control of enhanced raman scattering using a DNA-based assembly process of dye-coded nanoparticles.Nat Nanotechnol,2008,3:548–551
    191 Dai Q,Liu X,Coutts J,Austin L,Huo Q.A one-step highly sensitive method for DNA detection using dynamic light scattering.J Am Chem Soc,2008,130:8138–8139
    192 Zhang C,Ma J,Yang J,Liu S,Xu J.Binding assistance triggering attachments of hairpin DNA onto gold nanoparticles.Anal Chem,2013,85 :11973–11978
    193 Guo L,Ferhan AR,Chen H,Li C,Chen G,Hong S,Kim DH.Distance-mediated plasmonic dimers for reusable colorimetric switches:a measurable peak shift of more than 60 nm.Small,2013,9:234–240
    194 Lee K,Cui Y,Lee LP,Irudayaraj J.Quantitative imaging of single m RNA splice variants in living cells.Nat Nanotechnol,2014,9:474–480
    195 Du BA,Li ZP,Liu CH.One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear lightscattering technique.Angew Chem Int Ed,2006,45:8022–8025
    196 Sato Y,Sato K,Hosokawa K,Maeda M.Surface plasmon resonance imaging on a microchip for detection of DNA-modified gold nanoparticles deposited onto the surface in a non-cross-linking configuration.Anal Biochem,2006,355:125–131
    197 Xie C,Xu F,Huang X,Dong C,Ren J.Single gold nanoparticles counter:an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays.J Am Chem Soc,2010,132:12763–12770
    198 Bai X,Shao C,Han X,Li Y,Guan Y,Deng Z.Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay:toward a generalized sensitivity-enhancing strategy.Biosens Bioelectron,2010,25:1984–1988
    199 Han G,Xing Z,Dong Y,Zhang S,Zhang X.One-step homogeneous DNA assay with single-nanoparticle detection.Angew Chem Int Ed,2011,50:3462–3465
    200 Park SJ,Lazarides AA,Mirkin CA,Brazis PW,Kannewurf CR,Letsinger RL.The electrical properties of gold nanoparticle assemblies linked by DNA.Angew Chem Int Ed,2000,39:3845–3848
    201 Hurst SJ,Hill HD,Mirkin CA.“Three-dimensional hybridization”with polyvalent DNA-gold nanoparticle conjugates.J Am Chem Soc,2008,130:12192–12200
    202 Yan Y,Chen JIL,Ginger DS.Photoswitchable oligonucleotide-modified gold nanoparticles:controlling hybridization stringency with photon dose.Nano Lett,2012,12:2530–2536
    203 Zhang K,Zhu X,Jia F,Auyeung E,Mirkin CA.Temperature-activated nucleic acid nanostructures.J Am Chem Soc,2013,135:14102–14105
    204 Wang W,Liu H,Liu D,Xu Y,Yang Y,Zhou D.Use of the interparticle i-motif for the controlled assembly of gold nanoparticles.Langmuir,2007,23:11956–11959
    205 Maye MM,Nykypanchuk D,van der Lelie D,Gang O.A simple method for kinetic control of DNA-induced nanoparticle assembly.J Am Chem Soc,2006,128:14020–14021
    206 Lubitz I,Kotlyar A.G4-DNA-coated gold nanoparticles:synthesis and assembly.Bioconjugate Chem,2011,22:2043–2047
    207 Kanaras AG,Wang Z,Bates AD,Cosstick R,Brust M.Towards multistep nanostructure synthesis:programmed enzymatic self-assembly of DNA/gold systems.Angew Chem Int Ed,2003,42:191–194
    208 Bates AD,Callen BP,Cooper JM,Cosstick R,Glidle A,Jaeger L,Pearson JL,Maria PP,Xu C,Cumming DRS.Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNA-RNA interactions.Nano Lett,2006,6:445–448
    209 Zhao Y,Xu L,Kuang H,Wang L,Xu C.Asymmetric and symmetric pcr of gold nanoparticles:a pathway to scaled-up self-assembly with tunable chirality.J Mater Chem,2012,22:5574–5580
    210 Krpetic Z,Singh I,Su W,Guerrini L,Faulds K,Burley GA,Graham D.Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides.J Am Chem Soc,2012,134:8356–8359
    211 Amelie HJ,Kirkwood R,El-Sagheer AH,Brown T,Kanaras AG.Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles.Nanoscale,2013,5:7209–7212
    212 Campolongo MJ,Tan SJ,Smilgies DM,Zhao M,Chen Y,Xhangolli I,Cheng W,Luo D.Crystalline gibbs monolayers of DNA-capped nanoparticles at the air-liquid interface.ACS Nano,2011,5:7978–7985
    213 Lee JS,Stoeva SI,Mirkin CA.DNA-induced size-selective separation of mixtures of gold nanoparticles.J Am Chem Soc,2006,128:8899–8903
    214 Xiang Y,Wang Z,Xing H,Lu Y.Expanding dnazyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials.Chem Sci,2013,4:398–404
    215 Li K,Wang K,Qin W,Deng S,Li D,Shi J,Huang Q,Fan C.DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis.J Am Chem Soc,2015,137:4292–4295
    216 Kim AJ,Biancaniello PL,Crocker JC.Engineering DNA-mediated colloidal crystallization.Langmuir,2006,22:1991–2001
    217 Park SY,Lytton JAKR,Lee B,Weigand S,Schatz GC,Mirkin CA.DNA-programmable nanoparticle crystallization.Nature,2008,451:553 –556
    218 Radha B,Senesi AJ,O’Brien MN,Wang MX,Auyeung E,Lee B,Mirkin CA.Reconstitutable nanoparticle superlattices.Nano Lett,2014,14 :2162–2167
    219 Sun D,Gang O.Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA.J Am Chem Soc,2011,133 :5252–5254
    220 Auyeung E,Cutler JI,Mac Farlane RJ,Jones MR,Wu J,Liu G,Zhang K,Osberg KD,Mirkin CA.Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach.Nat Nanotechnol,2012,7:24–28
    221 Mac Farlane RJ,Jones MR,Lee B,Auyeung E,Mirkin CA.Topotactic interconversion of nanoparticle superlattices.Science,2013,341:1222–1225
    222 Brodin JD,Auyeung E,Mirkin CA.DNA-mediated engineering of multicomponent enzyme crystals.Proc Natl Acad Sci USA,2015,112:4564–4569
    223 Alivisatos AP,Johnsson KP,Peng X,Wilson TE,Loweth CJ,Bruchez MP,Schultz PG.Organization of“nanocrystal molecules”using DNA.Nature,1996,382:609–611
    224 Mastroianni AJ,Claridge SA,Alivisatos AP.Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds.J Am Chem Soc,2009,131:8455–8459
    225 Aldaye FA,Sleiman HF.Dynamic DNA templates for discrete gold nanoparticle assemblies:control of geometry,modularity,write/erase and structural switching.J Am Chem Soc,2007,129:4130–4131
    226 Choi JY,Kim YT,Seo TS.Polymerase chain reaction-free variable-number tandem repeat typing using gold nanoparticle-DNA monoconjugates.ACS Nano,2013,7:2627–2633
    227 Sandstroem P,Aakerman B.Electrophoretic properties of DNA-modified colloidal gold nanoparticles.Langmuir,2004,20:4182–4186
    228 Piantanida L,Naumenko D,Lazzarino M.Highly efficient gold nanoparticle dimer formation via DNA hybridization.RSC Adv,2014,4:15281–15287
    229 Li Y,Zheng Y,Gong M,Deng Z.Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures.Chem Commun,2012,48:3727–3729
    230 Xu X,Rosi NL,Wang Y,Huo F,Mirkin CA.Asymmetric functionalization of gold nanoparticles with oligonucleotides.J Am Chem Soc,2006,128:9286–9287
    231 Spain E,Miner B,Keyes TE,Forster RJ.Regio selective functionalisation of gold nanoparticles with DNA.Chem Commun,2012,48:838 –840
    232 Tan LH,Xing H,Chen H,Lu Y.Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly.J Am Chem Soc,2013,135:17675–17678
    233 Wang C,Du Y,Wu Q,Xuan S,Zhou J,Song J,Shao F,Duan H.Stimuli-responsive plasmonic core-satellite assemblies:i-motif DNA linker enabled intracellular ph sensing.Chem Commun,2013,49:5739–5741
    234 Sharma J,Chhabra R,Liu Y,Ke Y,Yan H.DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays.Angew Chem Int Ed,2006,45:730–735
    235 Le JD,Pinto Y,Seeman NC,Karin MF,Taton TA,Kiehl RA.DNA-templated self-assembly of metallic nanocomponent arrays on a surface.Nano Lett,2004,4:2343–2347
    236 Deng Z,Tian Y,Lee SH,Ribbe AE,Mao C.DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays.Angew Chem,Int Ed,2005,44:3582–3585
    237 Zhao W,Gao Y,Kandadai SA,Brook MA,Li Y.DNA polymerization on gold nanoparticles through rolling circle amplification:towards novel scaffolds for three-dimensional periodic nanoassemblies.Angew Chem Int Ed,2006,45:2409–2413
    238 Lee JH,Wernette DP,Yigit MV,Liu J,Wang Z,Lu Y.Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener.Angew Chem Int Ed,2007,46:9006–9010
    239 Klein WP,Schmidt CN,Rapp B,Takabayashi S,Knowlton WB,Lee J,Yurke B,Hughes WL,Graugnard E,Kuang W.Multiscaffold DNA origami nanoparticle waveguides.Nano Lett,2013,13:3850–3856
    240 Lau KL,Hamblin GD,Sleiman HF.Gold nanoparticle 3d-DNA building blocks:high purity preparation and use for modular access to nanoparticle assemblies.Small,2014,10:660–666
    241 Zuker M.Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res,2003,31:3406–3415
    242 Maeda Y,Tabata H,Kawai T.Two-dimensional assembly of gold nanoparticles with a DNA network template.Appl Phys Lett,2001,79:1181–1183
    243 Mudalige TK,Gang O,Sherman WB.A zwitterion-DNA coating stabilizes nanoparticles against Mg2+driven aggregation enabling attachment to DNA nanoassemblies.Nanoscale,2012,4:2855–2858
    244 Sharma J,Chhabra R,Cheng A,Brownell J,Liu Y,Yan H.Control of self-assembly of DNA tubules through integration of gold nanoparticles.Science,2009,323:112–116
    245 Rothemund PWK.Folding DNA to create nanoscale shapes and patterns.Nature,2006,440:297–302
    246 Pilo PM,Goldberg S,Samano E,La Bean TH,Finkelstein G.Connecting the nanodots:programmable nanofabrication of fused metal shapes on DNA templates.Nano Lett,2011,11:3489–3492
    247 Hung AM,Micheel CM,Bozano LD,Osterbur LW,Wallraff GM,Cha JN.Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami.Nat Nanotechnol,2010,5:121–126
    248 Dai G,Lu X,Chen Z,Meng C,Ni W,Wang Q.DNA origami-directed,discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality.ACS Appl Mater Interfaces,2014,6:5388–5392
    249 Wang R,Nuckolls C,Wind SJ.Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds.Angew Chem Int Ed,2012,51 :11325–11327
    250 Takenaka T,Endo M,Suzuki Y,Yang Y,Emura T,Hidaka K,Kato T,Miyata T,Namba K,Sugiyama H.Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials.Chem-Eur J,2014,20:14951–14954
    251 Acuna GP,Bucher M,Stein IH,Steinhauer C,Kuzyk A,Holzmeister P,Schreiber R,Moroz A,Stefani FD,Liedl T,Simmel FC,Tinnefeld P.Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.ACS Nano,2012,6:3189–3195
    252 Acuna GP,Moeller FM,Holzmeister P,Beater S,Lalkens B,Tinnefeld P.Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas.Science,2012,338:506–510
    253 Holzmeister P,Pibiri E,Schmied JJ,Sen T,Acuna GP,Tinnefeld P.Quantum yield and excitation rate of single molecules close to metallic nanostructures.Nat Commun,2014,5:5356
    254 Pilo PM,Watson A,Demers S,La Bean TH,Finkelstein G.Surface-enhanced raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.Nano Lett,2014,14:2099–2104
    255 Pellegrotti JV,Acuna GP,Puchkova A,Holzmeister P,Gietl A,Lalkens B,Stefani FD,Tinnefeld P.Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids.Nano Lett,2014,14:2831–2836
    256 Ko SH,Du K,Liddle JA.Quantum-dot fluorescence lifetime engineering with DNA origami constructs.Angew Chem Int Ed,2013,52:1193–1197
    257 Li Z,Chung SW,Nam JM,Ginger DS,Mirkin CA.Living templates for the hierarchical assembly of gold nanoparticles.Angew Chem Int Ed,2003,42:2306–2309
    258 Rosi NL,Thaxton CS,Mirkin CA.Control of nanoparticle assembly by using DNA-modified diatom templates.Angew Chem Int Ed,2004,43 :5500–5503
    259 Koplin E,Niemeyer CM,Simon U.Formation of electrically conducting DNA-assembled gold nanoparticle monolayers.J Mater Chem,2006,16:1338–1344
    260 Tokareva I,Hutter E.Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films.J Am Chem Soc,2004,126:15784–15789
    261 Heimann KJC,Richert C.DNA-mediated site-specific deposition of gold nanoparticles on silicon wafers.Nanoscale,2010,2:2579–2582
    262 Hazarika P,Irrgang J,Spengler M,Niemeyer CM.Biochemical synthesis and manipulation of a 70 nm DNA linker for the assembly of DNA-functionalized gold nanoparticles.Adv Funct Mater,2007,17:437–442
    263 Sadasivan S,Dujardin E,Li M,Johnson CJ,Mann S.DNA-driven assembly of mesoporous silica/gold satellite nanostructures.Small,2005,1 :103–106
    264 Xing H,Wang Z,Xu Z,Wong NY,Xiang Y,Liu GL,Lu Y.DNA-directed assembly of asymmetric nanoclusters using janus nanoparticles.ACS Nano,2012,6:802–809
    265 Albert SK,Thelu HVP,Golla M,Krishnan N,Chaudhary S,Varghese R.Self-assembly of DNA-oligo(p-phenylene-ethynylene)hybrid amphiphiles into surface-engineered vesicles with enhanced emission.Angew Chem Int Ed,2014,53:8352–8357
    266 Zheng Y,Lalander CH,Thai T,Dhuey S,Cabrini S,Bach U.Gutenberg-style printing of self-assembled nanoparticle arrays:electrostatic nanoparticle immobilization and DNA-mediated transfer.Angew Chem Int Ed,2011,50:4398–4402
    267 Estephan ZG,Qian Z,Lee D,Crocker JC,Park SJ.Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach.Nano Lett,2013,13:4449–4455
    268 Cheng W,Campolongo MJ,Cha JJ,Tan SJ,Umbach CC,Muller DA,Luo D.Free-standing nanoparticle superlattice sheets controlled by DNA.Nat Mater,2009,8:519–525
    269 Patel PC,Giljohann DA,Daniel WL,Zheng D,Prigodich AE,Mirkin CA.Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles.Bioconjugate Chem,2010,21:2250–2256
    270 Wu XA,Choi CHJ,Zhang C,Hao L,Mirkin CA.Intracellular fate of spherical nucleic acid nanoparticle conjugates.J Am Chem Soc,2014,136 :7726–7733
    271 Borse S,Joshi S,Khan A.Enhanced in vitro cytotoxicity and cellular uptake of DNA bases functionalized gold nanoparticles in hela cell lines.RSC Adv,2015,5:13402–13410
    272 Shiang YC,Ou CM,Chen SJ,Ou TY,Lin HJ,Huang CC,Chang HT.Highly efficient inhibition of human immunodeficiency virus type 1reverse transcriptase by aptamers functionalized gold nanoparticles.Nanoscale,2013,5:2756–2764
    273 Massich MD,Giljohann DA,Schmucker AL,Patel PC,Mirkin CA.Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates.ACS Nano,2010,4:5641–5646
    274 Massich MD,Giljohann DA,Seferos DS,Ludlow LE,Horvath CM,Mirkin CA.Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates.Mol Pharm,2009,6:1934–1940
    275 Dave N,Liu JW.Protection and promotion of uv radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles.Adv Mater,2011,23:3182–3186
    276 Rosi NL,Giljohann DA,Thaxton CS,Lytton-Jean AKR,Han MS,Mirkin CA.Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.Science,2006,312:1027–1030
    277 Conde J,de la Fuente JM,Baptista PV.In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles.Nanotechnology,2010,21:505101–505106
    278 Son S,Nam J,Kim J,Kim S,Kim WJ.I-motif-driven Au nanomachines in programmed sirna delivery for gene-silencing and photothermal ablation.ACS Nano,2014,8:5574–5584
    279 Perrett AJ,Dickinson RL,Krpetic Z,Brust M,Lewis H,Eperon IC,Burley GA.Conjugation of peg and gold nanoparticles to increase the accessibility and valency of tethered rna splicing enhancers.Chem Sci,2013,4:257–265
    280 Diaz JA,Gibbs DJM.Sharpening the thermal release of DNA from nanoparticles:towards a sequential release strategy.Small,2013,9:2862–2871
    281 Alexander CM,Maye MM,Dabrowiak JC.DNA-capped nanoparticles designed for doxorubicin drug delivery.Chem Commun,2011,47:3418–3420
    282 Alexander CM,Hamner KL,Maye MM,Dabrowiak JC.Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.Bioconjugate Chem,2014,25:1261–1271
    283 Song L,Ho VHB,Chen C,Yang Z,Liu D,Chen R,Zhou D.Efficient,ph-triggered drug delivery using a p H-responsive DNA-conjugated gold nanoparticle.Adv Healthcare Mater,2013,2:275–280
    284 Latorre A,Posch C,Garcimartin Y,Celli A,Sanlorenzo M,Vujic I,Ma J,Zekhtser M,Rappersberger K,Ortiz-Urda S,Somoza A.DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics.Nanoscale,2014,6:7436–7442
    285 Zhang XQ,Xu X,Lam R,Giljohann D,Ho D,Mirkin CA.Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates.ACS Nano,2011,5:6962–6970
    286 Du Z,Luo Q,Yang L,Bing T,Li X,Guo W,Wu K,Zhao Y,Xiong S,Shangguan D,Wang F.Mass spectrometric proteomics reveals that nuclear protein positive cofactor pc4 selectively binds to cross-linked DNA by a trans-platinum anticancer complex.J Am Chem Soc,2014,136 :2948–2951
    287 Wen Y,Xu L,Li C,Du H,Chen L,Su B,Zhang Z,Zhang X,Song Y.DNA-based intelligent logic controlled release systems.Chem Commun,2012,48:8410–8412
    288 Oh JW,Lim DK,Kim GH,Suh YD,Nam JM.Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.J Am Chem Soc,2014,136:14052–14059
    289 Kang JW,So PTC,Dasari RR,Lim DK.High resolution live cell raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap.Nano Lett,2015,15:1766–1772
    290 Lee JH,Kim GH,Nam JM.Directional synthesis and assembly of bimetallic nanosnowmen with DNA.J Am Chem Soc,2012,134:5456–5459
    291 Shen J,Su J,Yan J,Zhao B,Wang D,Wang S,Li K,Liu M,He Y,Mathur S,Fan C,Song S.Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification.Nano Res,2015,8:731–742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700