矢量光共焦扫描显微系统纳米标准样品的制备与物理测量精度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication and physical measurement accuracy of nanoscale standard samples for vector beams confocal laser scanning microscopy
  • 作者:李潇男 ; 关国荣 ; 刘忆琨 ; 梁浩文 ; 张爱琴 ; 周建英
  • 英文作者:Li Xiao-Nan;Guan Guo-Rong;Liu Yi-Kun;Liang Hao-Wen;Zhang Ai-Qin;Zhou Jian-Ying;State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University;School of Electronic and Information Engineering, Sun Yat-sen University;
  • 关键词:微纳加工 ; 标准样品 ; 超分辨 ; 共聚焦激光扫描显微镜
  • 英文关键词:micro-and nanofabrication;;standard sample;;super-resolution;;confocal laser scanning microscopy
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中山大学光电材料与技术国家重点实验室;中山大学电子与信息工程学院;
  • 出版日期:2019-07-12 14:20
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11534017,11704421);; 中央高校基本科研业务费专项资金(批准号:16lgpy53,171gpy20,17lgjc39);; 广州市科技计划(批准号:201805010004)资助的课题~~
  • 语种:中文;
  • 页:WLXB201914031
  • 页数:9
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:364-372
摘要
针对超分辨领域分辨率测量标准的缺失情况,本文介绍了一种用于纳米尺度分辨率测试的标准样品的设计方案和制备方法,该样品适用于矢量光共聚焦激光扫描显微系统.该设计方案包含一系列测量图案和明确的指示标记,具有测量范围宽、线宽梯级序列分布合理、制备精度高等特点.首先在非晶硅片上实现硅纳米标准样品的制备,并经过多次探索工艺,提高了测试图案的精度.光学测试结果证实该纳米标样可用于分辨率测试,同时测得矢量光共聚焦激光扫描显微镜的分辨率为96 nm (n=1.52, 405 nm光源).针对硅纳米标准样品低对比度的问题,本文提供石英片上金属纳米标准样品的制备方法作为补充.纳米标准样品的实现,为点扫描式超分辨显微镜的分辨率指标提供了一种更严谨的测试途径,同时能够为显微镜的调试提供原理性指导.测试中发现纳米尺度的光学成像效果除了受到样品形貌的影响外,还受到到样品的光电物性的影响,其相互作用机理尚待进一步深入研究.
        Various kinds of super-resolution optical microscope techniques have been developed to break the diffraction barrier in the past decades. Confocal laser scanning microscopy is the super-resolution microscopy. It is widely used due to high resolution and depth selectivity in obtaining images. However, there are neither accurate nor rigorous measurement methods with a nanoscale resolution. In order to measure the resolution of vector beam confocal laser scanning microscopy accurately and rigorously, a nanoscale resolution standard sample is proposed and experimentally realized. This sample is composed of a series of accurate measure patterns and a couple of arrays of triangle finding structures. It allows a wide measurement range between 40 nm to 1000 nm, and provides appropriate measurement steps and high measurement accuracy. The measurement patterns can be efficiently figured out by using the found structures, and their structure line width can be easily calculated. The first standard sample is produced on a piece of amorphous silicon by electron beam lithography and inductive coupled plasma etching technology, and measured by the scanning electron microscopy.According to the test, the sample meets the requirements of accuracy for nanoscale resolution measurement.Optical testing is applied to the sample by a vector beam confocal laser scanning microscope. And the sample shows that the resolution is 96 nm(oil immersion, refractive index 1.52) under the irradiation of 405 nm radially polarized beams, which is far beyond the diffraction barrier. Furthermore, a metal structure standard sample, which is based on a piece of indium tin oxide glass, is produced to improve the signal contrast ratio of the silicon standard sample. The measurement patterns are fabricated by electron beam lithography and electron beam evaporation and made of 10 nm titanium and 100 nm gold. It works for both reflective and transmissive confocal laser scanning microscopy, and would obtain high resolution images with a better contrast ratio. These standard samples are able to test the performance of microscope system efficiently, and provide a more rigorous way to make sub-100 nm resolution measurement and a calibration guidance for point scanning super-resolution microscope. In the meantime, we find that nanoscale opticalimaging is affected not only by sample morphology, but also by the photoelectron property of the sample. Further study is required to understand the underlying mechanism.
引文
[1]Abbe E 1873 Archiv f.mikrosk.Anatomie 9 413
    [2]Huang B,Babcock H P,Zhuang X W 2010 Cell 143 1047
    [3]Sigal Y M,Zhou R B,Zhuang X W 2018 Science 361 880
    [4]Roy T,Rogers E T,Zheludev N I 2013 Opt. Express 21 7577
    [5]Minsky M 1961 US Patent 3013467
    [6]Dorn R,Quabis S,Leuchs G 2003 Phys.Rev.Lett.91 233901
    [7]Yang L X,Xie X S,Wang S C,Zhou J Y 2013 Opt. Lett. 381331
    [8]Chen R,Agarwal K,Sheppard C J R,Chen X D 2013 Opt.Lett. 38 3111
    [9]Yurt A,Grogan M D W,Ramachandran S,Goldberg B B,Unlu M S 2014 Opt.Express 22 7320
    [10]Xie X S,Chen Y Z,Yang K,Zhou J Y 2014 Phys.Rev.Lett.113 263901
    [11]Rittweger E,Han K Y,Irvine S E,Eggeling C,Hell S W 2009Nat.Photon.3 144
    [12]Gustafsson M G L 2005 Proc.Natl. Acad.Sci.U.S.A.10213081
    [13]Huang B,Wang W Q,Bates M,Zhuang X W 2008 Science319 810
    [14]Rust M J,Bates M,Zhuang X W 2006 Nat.Methods 3 793
    [15]Yang K,Xie X S,Zhou J Y 2017 J.Opt.Soc.Am.A 34 61
    [16]Dorn R,Quabis S,Leuchs G 2003 J.Mod.Opt.50 1917
    [17]GB/T6161-2008 2008 Micro graphics-ISO Resolution Test Chart No.2-Description and Use(Beijing:Standards Press of China)(in Chinese)[GB/T6161-2008 2008缩微摄影技术ISO2号解像力测试图的描述及其应用(北京:中国标准出版社)]
    [18]Stark P R H,Rinko L J,nLarson D N 2003 J.Micro sc.(Oxford,U.K.)212 307
    [19]Iketaki Y,Oi H,Bokor N,Kumagai H 2015 Rev.Sci.Instrum.86 086109
    [20]Huebner U,Morgenroth W,Boucher R,Meyer M,Mirande,Buhr E,Ehret G,Dai G,Dziomba T,Hild R,Fries T 2007Meas.Sci.Technol.18 422
    [21]GB/T 321-2005 2005 Preferred Nu-mbers-Series of Preferred Numbers(Beijing:Standards Press of China)(in Chinese))(in Chinese)[GB/T 321-2005 2005优先数和优先数系(北京:中国标准出版社)]
    [22]Dai G L,Hahm K,Bosse H,Dixson R G 2017 Meas.Sci.Technol.28 065010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700