甲烷体积分数对纳米金刚石薄膜形貌的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Methane Volume Fraction on the Morphology of Nanocrystalline Diamond Films
  • 作者:熊礼威 ; 彭环洋 ; 汪建华 ; 崔晓慧 ; 龚国华
  • 英文作者:XIONG Li-wei;PENG Huan-yang;WANG Jian-hua;CUI Xiao-hui;GONG Guo-hua;School of Materials Science and Engineering,Wuhan Institute of Technology;
  • 关键词:纳米金刚石薄膜 ; MPCVD ; 晶粒尺寸 ; 表面粗糙度 ; 甲烷体积分数 ; 表面形貌
  • 英文关键词:nanocrystalline diamond film;;MPCVD;;grain size;;surface roughness;;methane volume fraction;;surface morphology
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:武汉工程大学材料科学与工程学院;
  • 出版日期:2016-03-20
  • 出版单位:表面技术
  • 年:2016
  • 期:v.45
  • 基金:国家自然科学基金项目(51402220);; 武汉工程大学青年基金项目(Q201501)~~
  • 语种:中文;
  • 页:BMJS201603012
  • 页数:6
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:79-84
摘要
目的研究不同甲烷体积分数对纳米金刚石(NCD)薄膜生长的影响,实现较小晶粒尺寸、高平整度的NCD薄膜的制备。方法采用微波等离子体增强化学气相沉积的方法制备NCD薄膜,以CH4/H2为气源,在生长阶段控制其他条件不变的前提下,探讨不同甲烷体积分数对NCD晶粒尺寸、表面形貌以及表面粗糙度的影响。采用SEM、XRD等观测NCD薄膜的表面形貌和晶粒尺寸大小,并利用Raman对NCD薄膜的不同散射峰进行分析。结果随着甲烷体积分数的增加,薄膜晶粒尺寸有减小的趋势。甲烷体积分数较低时,晶形比较完整,但致密度较小;甲烷体积分数较高时,晶形杂乱无章,但致密度较好。当甲烷体积分数为9%时NCD薄膜平均粒径达到最小,为21.3 nm,表面粗糙度较好,但非晶金刚石成分开始大量生成,NCD薄膜质量开始变差;当甲烷体积分数为8%时其形貌最好,且此时最小表面粗糙度小于20 nm。通过Raman分析可知NCD薄膜中出现了硅峰和石墨烯特征峰。结论甲烷体积分数对NCD薄膜形貌有较大影响,甲烷体积分数为8%时是表面平整度由较差变好再逐渐变差的分界点,且平均晶粒尺寸为23.6 nm,薄膜表面具有较好的平整度。
        Objective To study the effect of different methane volume fractions on the growth of nanocrystalline diamond films,and to realize the preparation of NCD thin films with smaller grain size and high flatness. Methods Nanocrystalline diamond thin films were prepared by microwave plasma enhanced chemical vapor deposition method. The effects of different volume fractions of methane on the grain size,surface morphology and surface roughness of nanocrystalline diamond films were discussed with CH4/ H2 as the gas source and other conditions kept constant during the growth period. The surface morphology and grain size of nanocrystalline diamond films were observed by SEM and XRD,and the scattering peaks were analyzed by Raman. Results With the increase of methane volume fraction,the grain size of the films decreased. At low methane volume fraction,the crystal shape was complete,but less dense,while at high methane volume fraction,the crystal shape was disorganized,but the density was higher. When the methane volume fraction was 9%,the minimal average particle size of 21. 3 nm was reached,the surface roughness was good,but the quality of NCD films became poor,with massive generation of amorphous diamond components. At a methane volume fraction of8%,the morphology was the best,and the minimum surface roughness was less than 20 nm. The Raman analysis showed that silicon peak and graphene characteristic peaks occurred in the NCD films. Conclusion Methane volume fraction had a great effect on the quality of the nanocrystalline diamond films. The methane volume fraction of 8% was the dividing point of surface flatness changing from poor to good and then again changing gradually poor. Under this condition,the average grain size was 23. 6 nm,and the film surface was smooth.
引文
[1]SERMEUS J,VERSTRAETEN B,SALENBIEN R,et al.Determination of Elastic and Properties of a Thin Nanocrystalline Diamond Coating Using All-optical Methods[J].Thin Solid Films,2015,590:284—292.
    [2]KOMLENOK M S,ZANIEWSKI A M,ZAVEDEEV E V,et al.UV Laser Induced Changes to Morphological,Optical and Electrical Properties of Conductive Nanocrytalline Diamond Films[J].Diamond and Related Materials,2015,58:196—199.
    [3]HUANG K,HU X J,XU H,et al.The Oxidization Behavior and Mechanical Properties of Ultrananocrystalline Diamond films at High Temperature Annealing[J].Applied Surface Science,2014,317:11—18.
    [4]EWAIS E M,BESISA D H,ELAMIR A M,et al.Optical Properties of Nanocrystalline Magnesium Aluminate Spinel Synthesized from Industrial Wastes[J].Journal Alloys and Compounds,2015,649:159—166.
    [5]ELNAHASS M M,SOLIMAN H S,KHALIFA B A,et al.Structural and Optical Properties of Nanocrystalline Aluminum Phthalocyanine Chloride Thin Films[J].Materials Science in Semiconductor Processing,2015,38:177—183.
    [6]BUJA F,KOKORIAN J,SUMANT A V,et al.Studies on Measuring Surface Adhesion between Sidewalls in Boron Doped Ultrananocrystalline Diamond Based Microelectromechanical Devices[J].Diamond and Related Materials,2015,55:22—31.
    [7]BUJA F,SUMANT A V,KOKORIAN J,et al.Electrically Conducting Ultrananocrystalline Diamond for the Development of a Next Generation of Micro-actuators[J].Sensors and Actuators A:Physical,2014,214:259—266.
    [8]李志扬,张华,周一丹,等.纳米金刚石薄膜制备技术的研究进展[J].现代制造工程,2013,(3):134—139.LI Zhi-yang,ZHANG Hua,ZHOU Yi-dan,et al.Research Progress of Preparation Technology of Nano-diamond Thin Films[J].Modern Manufacturing Engineering,2013(3):134—139.
    [9]周文龙,张铭,宋雪梅,等.大面积纳米金刚石薄膜的制备及场发射性能[J].中国有色金属学报,2014,11:2844—2848.ZHOU Wen-long,ZHANG Ming,SONG Xue-mei,et al.Preparation and Field Emission Properties of Large Area Nanocrystalline Diamond Thin Films[J].Chinese Journal of Nonferrous Metals,2014,11:2844—2848.
    [10]陈冠虎.新型MPCVD装置制备大面积纳米金刚石薄膜的研究[D].武汉:武汉工程大学,2011.CHEN Guan-hu.Study on the Preparation of Large Area Nano-diamond Thin Films by New MPCVD Device[D].Wuhan:Wuhan Institute of Technology,2011.
    [11]ANDREW T,LADISLAV F,PAVEL H,et al.Large Area Deposition of Boron Doped Nano-crystalline Diamond Films at Low Temperatures Using Microwave Plasma Enhanced Chemical Vapour Deposition with Linear Antenna Delivery[J].Diamond and Related Materials,2014,47:27—34.
    [12]MEHEDI H A,ACHAH J,RATS D,et al.Low Temperature and Large Area Deposition of Nanocrystalline Diamond Films with Distributed Antenna Array Microwave-plasma Reactor[J].Diamond and Related Materials,2014,47:58—65.
    [13]苏含.纳米金刚石薄膜的制备与掺硼研究[D].武汉:武汉工程大学,2012.SU Han.Preparation of Nano-diamond Thin Films and Study on Boron Doped[D].Wuhan:Wuhan Institute of Technology,2012.
    [14]吕琳,汪建华,张莹.MPCVD法制备低粒径纳米金刚石薄膜的研究[J].真空与低温,2015(1):23—27.LYU Lin,WANG Jian-hua,ZHANG Yin.Study on Preparation of Nano-diamond Thin Films with Low Particle Size by MPCVD[J].Vacuum and Low Temperature,2015(1):23—27.
    [15]CHEN H C,LIU K F,TAI N H,et al.On the Mechanism of Enhancing the Nucleation Behavior of UNCD Films by Mocoating[J].Diamond and Related Materials,2010,19:134—137.
    [16]LIU Cong,WANG Jian-hua,WENG Jun.Growth of Microand Nanocrystalline Dual Layer Composite Diamond Films by Microwave Plasma CVD:Influence of CO2Concentration on Growth of Nano-layer[J].Journal of Crystal Growth,2015,410:30—34.
    [17]LIN C R,LIAO W H,WEI D H,et al.Improvement on the Synthesis Technique of Ultra-nanocrystalline Diamond Films by Using Microwave Plasma Jet Chemical Vapor Deposition[J].Journal of Crystal Growth,2011,326:212—217.
    [18]王兵,王延平,熊鹰,等.微波功率对掺氮纳米金刚石薄膜组成、结构及性能的影响[J].功能材料,2012,20:2848—2850.WANG Bing,WANG Yan-ping,XIONG Ying,et al.Effect of Microwave Power on the Composition,Structure and Properties of Nitrogen Doped Nanocrystalline Diamond Films[J].Functional Material,2012,20:2848—2850.
    [19]叶永权,匡同春,雷淑梅,等.金刚石膜的拉曼光谱表征技术进展[J].金刚石与磨料磨具工程,2007,161:17—21.YE Yong-quan,KUANG Tong-chun,LEI Shu-mei,et al.Progress in the Characterization of Diamond Films by Raman Spectroscopy[J].Diamond and Abrasives Engineering,2007,161:17—21.
    [20]吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014(3):301—318.WU Juan-xia,XU Hua,ZHANG Jin.Application of Raman Spectroscopy in the Characterization of Graphene Structures[J].Journal of Chemistry,2014(3):301—318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700