线火源与点火源在巷道火灾中烟流特性对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative analysis on smoke flow characteristics of line and ignition source in roadway fire
  • 作者:齐庆杰 ; 王欢 ; 周新华 ; 董子文
  • 英文作者:QI Qingjie;WANG Huan;ZHOU Xinhua;DONG Ziwen;College of Safety Science and Engineering, Liaoning Technical University;Cooperative Innovation Center for Disaster Prevention in Coal Mines, Liaoning Technical University;
  • 关键词:矿井巷道 ; 线火源 ; 点火源 ; 烟气流动特性 ; 大涡模拟
  • 英文关键词:mine tunnel;;line source;;ignition source;;features of smoke flow;;large eddy simulation
  • 中文刊名:FXKY
  • 英文刊名:Journal of Liaoning Technical University(Natural Science)
  • 机构:辽宁工程技术大学安全科学与工程学院;煤矿重大动力灾害防控协同创新中心;
  • 出版日期:2017-02-15
  • 出版单位:辽宁工程技术大学学报(自然科学版)
  • 年:2017
  • 期:v.36;No.222
  • 基金:辽宁省重点实验室项目(14-1176)
  • 语种:中文;
  • 页:FXKY201702007
  • 页数:7
  • CN:02
  • ISSN:21-1379/N
  • 分类号:37-43
摘要
为揭示井下线火源与点火源诱导火灾的不同,达到有针对性的进行矿井火灾防治,依据两种火源类型的燃烧特性,应用火灾动力学模拟软件FDS,建立了符合井下火灾燃烧特点的矿井平巷火灾模型,模拟对比分析了两类火源在相同火灾场景下烟气运动过程、速度分布及温度衰减规律.研究结果表明:在1.2 m/s风速条件下,线火源在顶棚射流过程中烟气的水平运动速度大于点火源,烟流逆流长度较长;巷道中截面火源附近速度最大,可达3.5 m/s,由于节流作用和输送机的遮挡,上风向顶板附近及输送机后部风速减小.顶板最高温度随火源距离的增大出现衰减,且线火源的衰减速度小于点火源,竖向温度由巷道顶板向底板方向递减.因此,线火源的火灾危害性更大,在火灾防治中应该给予更高的关注.
        In order to reveal the difference between ignition and line sources induced by fire and to achieve the mine fire prevention and control, this paper established the combustion model of coal mine fire based on the combustion characteristics of two fire sources by using the FDS. The fire smoke flow characteristics of the two type of sources were simulated and comparative analyzed in the same scene. Results show that under the condition of 1.2 m/s wind speed, horizontal velocity line fire is greater than the ignition source in the process of ceiling jet, and the length of the smoke back-flow is longer, and the maximum velocity of the cross section is 3.5 m/s near the fire source. Due to the throttling effect and restriction of the conveyer, wind speed decreases in the upper drift of the roof and the back of the conveyor. The throttle effect of the line source is more obvious. The decay rate of the line source is less than the ignition. The vertical temperature decreases gradually from the direction of the roadway roof to the floor. Therefore, the fire hazard of the line source is larger, and should be given more attention in the fire prevention and control.
引文
[1]郭玉森.矿井火灾特性及火源分析[J].闽西职业大学学报,2001(1):83-85.GUO Yusen.Mine fire characteristics and source analysis[J].Journal of Minxi Vocational College,2001(1):83-85.
    [2]傅培舫,周怀春,俞启香.火灾节流过程参数变化时序及其影响因素的研究[J].中国安全科学学报,2005,15(7):108-112.FU Peifang,ZHOU Huaichun,YU Qixiang.Study on parameter variation time-sequence in fire-throttling process and its influence factors[J].China Safety Science Journal,2005,15(7):108-112.
    [3]周福宝,王德明.矿井火灾烟流滚退距离的数值模拟[J].中国矿业大学学报,2004(5):9-13.ZHOU Fubao,WANG Deming.Numerical analysis of backflow distance of smoke in mine fire[J].Journal of China University of Mining&Technology,2004(5):9-13.
    [4]周延,王德明,周福宝.水平巷道火灾中烟流逆流层长度的实验研究[J].中国矿业大学学报,2001,30(5):446-448.ZHOU Yan,WANG Deming,ZHOU Fubao.Experimental study on length of smoke back-flow layer of fire in horizontal tunnel[J].Journal of China University of Mining&Technology,2001,30(5):446-448.
    [5]焦宇,周心权,康与涛.矿井平巷木材火灾烟流滚退理论分析与实验研究[J].煤炭学报,2010,35(12):2 105-2 110.JIAO Yu,ZHOU Xinquan,KANG Yutao.Theoretical analysis and experimental study on backflow smoke of mine laneway wood fire[J].Journal of China Coal Society,2010,35(12):2 105-2 110.
    [6]蒋军成,王省身.火灾巷道烟气流动的数值分析[J].煤炭学报,1997,22(2):165-170.JIANG Juncheng,WANG Xingshen.Numeric analysis of smoke in road-way in a mine fire[J].Journal of China Coal Society,1997,22(2):165-170.
    [7]王思仪,李宗翔,李静.坡度对巷道火灾影响的数值模拟[J].辽宁工程技术大学学报(自然科学版),2013,32(12):1 590-1 594.WANG Siyi,LI Zongxiang,LI Jing.Slope effects on tunnel fire withnumerical simulation[J].Journal of Liaoning Technical University(Natural Science),2013,32(12):1 590-1 594.
    [8]刘经纬,李玉福.水平巷道烟流逆流层长度CFD数值模拟[J].辽宁工程技术大学学报(自然科学版),2014,33(8):1 053-1 057.doi:10.3969/j.issn.1008-0562.2014.08.010.LIU Jingwei,LI Yufu.CFD numerical simulation of the lengthof count ercurrent layer in level tunnel[J].Journal of Liaoning Technical Univ ersity(Natural Science),2014,33(8):1 053-1 057.doi:10.3969/j.issn.1008-0562.2014.08.010.
    [9]王德明,周福宝,周延.矿井火灾中的火区阻力及节流作用[J].中国矿业大学学报,2013(4):328-331.WANG Deming,ZHOU Fubao,ZHOU Yan.Fire resistance and its effect on fire-throttling during mine fire[J].Journal of China University of Mining&Technology,2001,30(4):328-331.
    [10]李宗翔,王雅迪,高光超,等.巷道火灾火焰局部阻力模型构建及参数识别[J].煤炭学报,2015,40(4):909-914LI Zongxiang,WANG Yadi,GAO Guangchao,et al.Development of local resistance model of roadway fire flames and parameter identification[J].Journal of China Coal Society,2015,40(4):909-914.
    [11]姜宇鸿.矿井火灾火源燃烧特性及其对下风向巷道影响的研究[D].包头:内蒙古科技大学,2013.
    [12]王德明,程远平,周福宝,等.矿井火灾火源燃烧特性的实验研究[J].中国矿业大学学报,2002,31(1)30-33.WANG Deming,CHENG Yuanping,ZHOU Fubao,e t al.Experimental research on combustion property of mine fire source[J].Journal of China University of Mining&Technology,2002,31(1):30-33.
    [13]程远平,季经纬,李增华.矿用输送带与木材燃烧性能的对比实验研究[J].煤炭学报,2000,25(6):624-627.CHENG Yuanping,JI Jingwei,LI Zenghua.Comparative experiment of burning property of conveyer belts and wood[J].Journal of China Coal Society,2000,25(6):624-627.
    [14]KEVIN Mc Grattan,Randall Mc Dermott.Fire Dynamics Simulator(Version5)User's Guide[M].Washington:National Institute of Standards and Technology US Department of Commerce,2008:39-40.
    [15]HWANG C C,EDWARDS J C.The critical ventilation velocity in tunnel fires-a computer simulation[J].Fire Safety Journal,2005(40):213-244.
    [16]邢震.基于FDS的矿井外因火灾数值模拟研究[D].西安:西安科技大学,2013.
    [17]马洪亮,周心权.矿井火灾燃烧特性曲线的研究与应用[J].煤炭学报,2008,33(7):780-783.MA Hongliang,ZHOU Xinquan.Research and application of the charac teristic curves in mine fire[J].Journal of China Coal Society,2008,33(7):780-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700