海上风电筒型结构基础层状地基参数优化反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization Inversion of Multi-Layer Subsoil Parameters for Offshore Wind Turbine Structure Supported by Bucket Foundation
  • 作者:赵悦 ; 练冲 ; 练继建 ; 董霄峰 ; 王海军
  • 英文作者:Zhao Yue;Lian Chong;Lian Jijian;Dong Xiaofeng;Wang Haijun;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;School of Civil Engineering,Tianjin University;
  • 关键词:海上风电 ; 筒型基础 ; 地基参数 ; 优化反演 ; 联合仿真
  • 英文关键词:offshore wind turbine;;bucket foundation;;subsoil parameter;;optimization inversion;;co-simulation
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学水利工程仿真与安全国家重点实验室;天津大学建筑工程学院;
  • 出版日期:2019-01-30
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.338
  • 基金:科技部重点领域创新团队计划资助项目(2014RA4031);; 高等学校学科创新引智计划资助项目(B14012);; 国家自然科学基金青年基金资助项目(51709202);; 天津市科技计划资助项目(16PTGCCX00160)~~
  • 语种:中文;
  • 页:TJDX201904012
  • 页数:7
  • CN:04
  • ISSN:12-1127/N
  • 分类号:91-97
摘要
如何准确建立地基弹性模量与压缩模量的关系已经成为海上风电结构设计与校核过程中关键难题.针对响水海上风电复合筒型基础结构原型数据与地勘资料,提出一种基于MATLAB和ABAQUS的联合仿真方法(MATABA)对筒型基础复杂层状地基参数优化反演分析.首先,开发了以MATLAB粒子群算法为主程序调用ABAQUS进行循环地基参数优化反演的程序;然后,建立三维"风机-塔筒-复合筒型基础-地基"一体化有限元-无限元耦合模型;最后,基于MAT-ABA优化反演得到的参数,对比分析风荷载激励下筒型基础结构的动态响应模拟值与实测值.结果表明,复杂层状地基弹性模量与压缩模量转换系数不同,对比优化反演得到的参数下动力响应模拟值与实测值拟合良好,表明优化反演结果的准确性与可靠性.
        Accurate determination of the conversion relationship between elastic modulus and compressive modulus of subsoil has become a key problem in the design and verification of offshore wind turbine structures. A co-simulation method based on MATLAB and ABAQUS is proposed to optimize the inversion analysis of multi-layer subsoil parameters and determine the relationship between these two types of modulus,on the basis of the prototype observation data and geological data for composite bucket foundation of offshore wind turbine at Xiangshui wind farm. First,an algorithm based on particle swarm optimization so-called MAT-ABA(combined programs of MATLAB and ABAQUS)is developed to realize the loop inversion optimization of subsoil parameters. Then,a three-dimensional integrated coupling model comprising turbine,tower,composite bucket foundation,and soil is constructed based on finite element and infinite element theories. Lastly,the simulation and observation results of the bucket foundation structure induced by wind excitation are compared based on the subsoil parameters obtained from optimization inversion. The result shows that the conversion coefficients between elastic modulus and compressive modulus of the multilayer subsoil parameters are different. Furthermore,the simulated dynamic response has a good fitting trend with the measured values in dynamic response,which verifies the accuracy and reliability of the optimization inversion results.
引文
[1]Sahu B K.Wind energy developments and policies in China:A short review[J].Renewable and Sustainable Energy Reviews,2017,81(1):1393-1405.
    [2]Oh K Y,Nam W,Ryu M S,et al.A review of foundations of offshore wind energy convertors:Current status and future perspectives[J].Renewable and Sustainable Energy Reviews,2018,88:16-36.
    [3]Carswell W,Johansson J,L?vholt F,et al.Foundation damping and the dynamics of offshore wind turbine monopoles[J].Renewable Energy,2015,80:724-736.
    [4]Willis D J,Niezrecki C,Kuchma D,et al.Wind energy research:State-of-the-art and future research directions[J].Renewable Energy,2018,125:133-154.
    [5]Wang X,Zeng X,Li J,et al.A review on recent advancements of substructures for offshore wind turbines[J].Energy Conversion and Management,2018,158:103-119.
    [6]Lian Jijian,Sun Liqiang,Zhang Jinfeng,et al.Bearing capacity and technical advantages of composite bucket foundation of offshore wind turbines[J].Transactions of Tianjin University,2011,17(2):132-137.
    [7]Lian Jijian,Ding Hongyan,Zhang Puyang,et al.Design of large-scale prestressing bucket foundation for offshore wind turbines[J].Transactions of Tianjin University,2012,18(2):79-84.
    [8]Arany L,Bhattacharya S,Macdonald J H G,et al.Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J].Soil Dynamics and Earthquake Engineering,2016,83:18-32.
    [9]Arany L,Bhattacharya S,Adhikari S,et al.An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models[J].Soil Dynamics and Earthquake Engineering,2015,74:40-45.
    [10]Lombardi D,Bhattacharya S,Wood D M.Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J].Soil Dynamics and Earthquake Engineering,2013,49:165-180.
    [11]Bisoi S,Haldar S.Design of monopile supported offshore wind turbine in clay considering dynamic soilstructure-interaction[J].Soil Dynamics and Earthquake Engineering,2015,73:103-117.
    [12]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,2004.Gao Dazhao.Soil Mechanics and Foundation Engineering[M].Beijing:China Architecture&Building Press,2004(in Chinese).
    [13]Veritas D N.Design of Offshore Wind Turbine Structures[S].Offshore Standard DNV-OS-J101,2004.
    [14]International Electrotechnical Commission.IEC 61400-1:Wind Turbines Part 1:Design Requirements[S].International Electrotechnical Commission,2005.
    [15]陈勇华.土体压缩模量,变形模量和弹性模量的讨论[J].城市建设,2010,66:135-136.Chen Yonghua.Discussion on soil compression modulus,deformation modulus and elastic modulus[J].Chengshi Jianshe,2010,66(1):135-136(in Chinese).
    [16]贾堤,石峰,郑刚,等.深基坑工程数值模拟土体弹性模量取值的探讨[J].岩土工程学报,2008,30(1):155-158.Jia Di,Shi Feng,Zheng Gang,et al.Elastic modulus of soil used in numerical simulation of deep foundation pits[J].Chinese Journal of Geotechnical Engineering,2008,30(1):155-158(in Chinese).
    [17]舒武堂,李国胜,蒋涛.武汉地区淤泥质软土、粘性土的压缩模量与变形模量的相关关系[J].岩土工程界,2004,7(7):29-30.Shu Wutang,Li Guosheng,Jiang Tao.Relationship between compressive modulus and deformation modulus of clay soil in Wuhan region[J].Geotechnical Engineer-ing World,2004,7(7):29-30(in Chinese).
    [18]杨敏,赵锡宏.分层土中的单桩分析法[J].同济大学学报:自然科学版,1992,20(4):421-428.Yang Min,Zhao Xihong.An approach for a single pile in layer soil[J].Journal of Tongji University:Natural Science,1992,20(4):421-428(in Chinese).
    [19]郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012.Guo Wenzhong,Chen Guolong.Discrete Particle Swarm Optimization(PSO)and Its Application[M].Beijing:Tsinghua University Press,2012(in Chinese).
    [20]Cheng S,Lu H,Lei X,et al.A quarter century of particle swarm optimization[J].Complex&Intelligent Systems,2018,4(3):1-13.
    [21]刘欣蔚,王浩,雷晓辉,等.粒子群算法参数设置对新安江模型模拟结果的影响研究[J].南水北调与水利科技,2018,16(1):69-74.Liu Xinwei,Wang Hao,Lei Xiaohui,et al.Influence of parameter setting in PSO algorithm on simulation results of Xin’anjiang model[J].South-to-North Water Transfers and Water Science&Technology,2018,16(1):69-74(in Chinese).
    [22]El-Shorbagy M A,Hassanien A E.Particle swarm optimization from theory to applications[J].International Journal of Rough Sets and Data Analysis,2018,5(2):1-24.
    [23]董霄峰.海上风机结构振动特性分析与动态参数识别研究[D].天津:天津大学建筑工程学院,2014.Dong Xiaofeng.Vibration Behavior Analysis and Dynamic Parameter Identification of Offshore Wind Turbine Structure[D].Tianjin:School of Civil Engineering,Tianjin University,2014(in Chinese).
    [24]于通顺,王海军.循环荷载下复合筒型基础地基孔隙水压力变化及液化分析[J].岩土力学,2014,35(3):820-826.Yu Tongshun,Wang Haijun.Pore water pressure fluctuation and liquefaction analysis of subgrade for composite bucket foundation under cyclic loading[J].Rock and Soil Mechanics,2014,35(3):820-826(in Chinese).
    [25]盛振国,任慧龙,甄春博,等.基于时域载荷的海上风机基础结构疲劳分析[J].华中科技大学学报:自然科学版,2014,42(4):96-100.Sheng Zhenguo,Ren Huilong,Zhen Chunbo,et al.Fatigue analysis for offshore wind turbine foundation structures based on loads in time domain[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2014,42(4):96-100(in Chinese).
    [26]梁力,李明.土木工程结构数值计算与仿真分析方法[M].沈阳:东北大学出版社,2014.Liang Li,Li Ming.Numerical Calculation and Simulation Methods in Civil Engineering Structure[M].Shenyang:Northeast University Press,2014(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700