管道滞留气团运动特性PIV实验与数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:PIV experiment and numerical simulations of behaviors of residual air mass in water pipelines
  • 作者:黄浩成 ; 陈奇 ; 蒋劲 ; 廖志芳 ; 刘来全 ; 谈凯
  • 英文作者:HUANG Haocheng;CHEN Qi;JIANG Jin;LIAO Zhifang;LIU Laiquan;TAN Kai;Key Lab of Hydraulic Machinery Transient, MOE, Wuhan University;Hubei Water Resources Research Institute;Bensv Valve Stock Co., Ltd.;
  • 关键词:重力输水管道 ; 滞留气团 ; PIV测量技术 ; 运动特性
  • 英文关键词:pressurized hydraulic pipeline;;residual air mass;;PIV measurement technology;;motion characteristics
  • 中文刊名:SFXB
  • 英文刊名:Journal of Hydroelectric Engineering
  • 机构:武汉大学水力机械过渡过程教育部重点实验室;湖北省水利水电科学研究院;博纳斯威博纳斯威阀门有限公司;
  • 出版日期:2018-12-07 09:07
  • 出版单位:水力发电学报
  • 年:2019
  • 期:v.38;No.202
  • 基金:国家自然科学基金(51879201)
  • 语种:中文;
  • 页:SFXB201905008
  • 页数:9
  • CN:05
  • ISSN:11-2241/TV
  • 分类号:74-82
摘要
为研究有压输水管道水流速度和局部高点的管道角度等因素对局部高点滞留气团运动特性的影响,搭建有压管道局部高点滞流气团实验平台,通过激光粒子测速系统(PIV)对局部高点处的流速进行测量;结合RSM湍流模型结合VOF多相流模型,构建局部高点气-液两相流体动力学模型进行数值模拟,分析管内流速、局部高点角度和气团体积对有压管道排气性能的影响。研究结果表明,随着水流速度增大,局部高点滞留气团呈现三种状态,即无气泡产生、气团产生气泡且部分被排出、气团一次性被排出;在其他条件相同时,若气体大于一定体积,一次性将气体携带出局部高点所需的水流速度增幅将减缓;局部高点角度越大,一次性将气体携带出局部高点所需的水流速度越大。
        An experimental platform is constructed to test the stagnant air mass in the top bend section(like an inverted siphon bend) of a pressurized pipeline, and water flow velocity in this bend section is measured using a particle image velocimetry(PIV) system, focusing on the influence of flow velocity and the local pipeline slopes on the motion characteristics of residual air mass. To simulate numerically the flow details in the bend section, we construct a local gas-liquid two-phase fluid dynamics model equipped with a RSM turbulence model and a VOF multiphase flow model, and use it to analyze the influence of water velocity, local pipeline slopes, and air mass volume. The results show that with the increasing water flow velocity, the residual air mass presents three flow regimes: no bubble generated, air bubble generated but discharged partially, and air mass discharged at one time. If other conditions are the same, the threshold water flow rate required for the third regime is relative low when the trapped air volume is greater than a certain value; the threshold water flow velocity for the third regime become greater at larger local slopes of the top bend section.
引文
[1]WYLIE E B,STREETER V L.Fluid transients[M].New York:Osborne McGraw-Hill,1978.
    [2]杨玉思,张世昌,付林.有压供水管道中气囊运动的危害与防护[J].中国给水排水,2002,18(9):32-33.YANG Yusi,ZHANG Shichang,FU Lin.Hazard and prevention of air pocket motion in pressure water supply pipe[J].China Water and Wastewater,2002,18(9):32-33.(in Chinese)
    [3]李小芹,孟利平,李浦,等.滞留气体对水电站引水系统运行稳定性的影响[J].水力发电,2017,43(6):89-92.LI Xiaoqin,MENG Liping,LI Pu,et al.Influence of residual gas on operating stability of water diversion system for hydropower station[J].Water Power,2017,43(6):89-92.(in Chinese)
    [4]ROMANO M,KAPELAN Z,SAVI?D A.Geostatistical techniques for approximate location of pipe burst events in water distribution systems[J].Journal of Hydroinformatics,2013,15(3):634.
    [5]BICIK J,KAPELAN Z,MAKROPOULOS C,et al.Pipe burst diagnostics using evidence theory[J].Journal of Hydroinformatics,2011,13(4):596-608.
    [6]WANG R,WANG Z,WANG X,et al.Pipe burst risk state assessment and classification based on water hammer analysis for water supply networks[J].Journal of Water Resources Planning&Management,2013,140(6):04014005.
    [7]刘志勇,刘梅清,蒋劲,等.基于瞬变流反问题分析的输水管道泄漏检测方法[J].核动力工程,2009,30(2):90-94.LIU Zhiyong,LIU Meiqing,JIANG Jin,et al.Pipe leak detection based on inverse transient analysis[J].Nuclear Power Engineering,2009,30(2):90-94.(in Chinese)
    [8]刘志勇,刘梅清,蒋劲,等.基于瞬变流频率响应分析的输水管道泄漏检测[J].水利学报,2015,46(11):1352-1359.LIU Zhiyong,LIU Meiqing,JIANG Jin,et al.Leak detection in water-delivering pipe system based on transient frequency response analysis[J].Journal of Hydraulic Engineering,2015,46(11):1352-1359.(in Chinese)
    [9]王伟哲,郄志红,刘美侠,等.基于改进遗传算法的供水管网故障监测点布置优化[J].水力发电学报,2012,31(1):15-19.WANG Weizhe,ZHAI Zhihong,LIU Meixia,et al.Optimized arrangement of fault-monitor sensors of water supply network by improved genetic algorithm[J].Journal of Hydroelectric Engineering,2012,31(1):15-19.(in Chinese)
    [10]张春娟.冯家山水库引水工程爆管事故分析研究[D].杨凌:西北农林科技大学,2007.ZHANG Chunjuan.Analysis and research for pipe break of diversion works of Fengjiashan reservoir[D].Yangling:Northwest A&F University,2007.(in Chinese)
    [11]梁宇舜.给水管网爆管事故特征分析案例[J].城镇供水,2012(4):54-57.LIANG Yushun.Case analysis of tube burst accidents in water supply network[J].City and Town Water Supply,2012(4):54-57.(in Chinese)
    [12]赵秀红,朱满林,张言禾,等.空气阀排气性能分析[J].水力发电,2008,34(2):20-22.ZHAO Xiuhong,ZHU Manlin,ZHANG Yanhe,et al.Exhaust performance analysis of air valve[J].Water Power,2008,34(2):20-22.(in Chinese)
    [13]胡建永,张健,祁舵.长距离输水系统中空气阀的运行特性研究[J].水力发电,2007,33(10):61-63.HU Jianyong,ZHANG Jian,QI Duo.Study on the operation characteristics of air valve in long-distance water supply system[J].Water Power,2007,33(10):61-63.(in Chinese)
    [14]TOKUHIRO A,MAEKAWA M,IIZUKA K,et al.Turbulent flow past a bubble and an ellipsoid using shadow-image and PIV techniques[J].International Journal of Multiphase Flow,1998,24(8):1383-1406.
    [15]BIRVALSKI M,TUMMERS M J,DELFOS R,et al.PIVmeasurements of waves and turbulence in stratified horizontal two-phase pipe flow[J].International Journal of Multiphase Flow,2014,62(2):161-173.
    [16]MEYER C,HOFFMANN M,SCHLüTER M.Micro-PIVanalysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel[J].International Journal of Multiphase Flow,2014,67:140-148.
    [17]王军锋,姚江,张宗海,等.外混式双流体雾化器荷电喷雾流场特性[J].江苏大学学报(自然科学版),2014,35(6):649-655.WANG Junfeng,YAO Jiang,ZHANG Zonghai,et al.Measurement of charged spray flow field for external mixing twin-fluid nozzle by PIV[J].Journal of Jiangsu University(Natural Science Edition),2014,35(6):649-655.(in Chinese)
    [18]CHEN W,CHEN S Y,YUAN X G,et al.PIVExperimental observation of Rayleigh convection and its influence on mass transfer[J].Journal by Chemical Engineering,2014,22(10):1078-1086.
    [19]许明,凌杭建,王鲁海,等.PIV技术在近水平油水两相流研究中的应用[J].实验流体力学,2012,26(1):12-15.XU Ming,LING Hangjian,WANG Luhai,et al.The application of PIV technique for the investigation of oilwater two phase flow[J].Journal of Experimental Fluid Mechanics,2012,26(1):12-15.(in Chinese)
    [20]王汉封,栗晶,柳朝晖,等.水平槽道内气固两相湍流中颗粒行为的PIV实验研究[J].实验流体力学,2012,26(3):38-44.WANG Hanfeng,LI Jing,LIU Zhaohui,et al.Experimental investigation on the particle behavior of gasparticle two phase turbulent flow in a horizontal channel using PIV[J].Journal of Experimental Fluid Mechanics,2012,26(3):38-44.(in Chinese)
    [21]张铭,许敏.直喷喷雾-环境气体两相流场的实验研究[J].工程热物理学报,2015,36(1):205-209.ZHANG Ming,XU Min.Experimental study on GDI fuel spray-ambient gas two-phase flow[J].Journal of Engineering Thermophysics,2015,36(1):205-209.(in Chinese)
    [22]ZHOU L,WANG H,KARNEY B,et al.Dynamic behavior of entrapped air pocket in a water filling pipeline[J].Journal of Hydraulic Engineering-ASCE,2018,144(8):04018045.
    [23]ZHOU L,LIU D Y,OU C Q.Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model[J].Engineering Applications of Computational Fluid Mechanics,2011,5(1):127-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700