台风作用下海上风机基础结构安全评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Typhoon risk assessment of the substructures of offshore wind turbines
  • 作者:朱彬彬 ; 王滨 ; 李玉刚 ; 楼敏俊 ; 夏露 ; 施勇
  • 英文作者:ZHU Binbin;WANG Bin;LI Yugang;LOU Minjun;XIA Lu;SHI Yong;Power China Huadong Engineering Corporation Limited;Dalian University of Technology;Air China Limited Zhejiang;Jiangsu Longyuan Offshore Wind Power Corporation Limited;
  • 关键词:海上风机 ; 台风 ; 半整体方法 ; 塑性可靠度指标 ; 失效模式
  • 英文关键词:offshore wind turbine;;typhoon;;semi-integrated model;;plastic reliability index;;failure modes
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:中国电建集团华东勘测设计研究院有限公司;大连理工大学;中国国际航空股份有限公司浙江分公司;江苏海上龙源发电有限公司;
  • 出版日期:2019-05-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金项目(51609219; 51739001)
  • 语种:中文;
  • 页:HYGC201903009
  • 页数:8
  • CN:03
  • ISSN:32-1423/P
  • 分类号:82-89
摘要
海上风机结构在运营期内可能面临极端风浪、地震等荷载作用。因此,极端工况作用下海上风机局部和整体结构反应将成为结构设计以及安全评价的重要参数。采用半整体方法,以桩基泥面最大位移、结构杆件极端承载力以及桩基抗压、抗拔承载力为判定指标,基于塑性可靠度理论,系统研究台风条件下运营期内海上风机基础结构可靠度指标变化规律,得出潜在的基础结构失效模式及相应判定指标。由研究可得,台风条件下运营期内海上风机基础结构各可靠度将显著受到基础冲刷、海生物生长和结构腐蚀的影响,并且结构失效模式将由单一模式破坏发展为多种模式联合失效。
        During the operation of offshore wind turbines( OWTs),OWTs may be confronted with extreme winds,waves or earthquakes. So the structural responses under such load conditions should be the dominant parameters for the design and safety assessment of OWTs. The semi-integrated analysis model of OWT is established in order to obtain the structural responses under extreme wind loads in the study. The maximum displacements of the substructure at the mudline,extreme capacities of the key members,and extreme axial capacities of the pile foundation are selected as the structural reliability/safety indexes. Based on the plastic reliability theory,the variation of safety indexes during the operation of OWT is revealed,and the potential failure modes of the structure are suggested. Furthermore,the influence of scouring,marine growth and structural corrosion on the safety of OWT is proved,then the combined failure modes are recommended for the safety assessment of OWTs.
引文
[1] AGARWAL H,MANUEL L. Simulation of offshore wind turbine response for long-term extreme load prediction[J]. Engineering Structures,2009,31:2236-2246.
    [2] HALLOWELL S,MYERS A,ARWADE S,et al. Hurricane risk assessment of offshore wind turbines[J]. Renewable Energy,2018,125:234-249.
    [3]李嘉文,唐友刚,李焱.叶片变桨失效过程中空气动力失衡对海上风机影响[J].海洋工程,2017,35(3):37-43.(LI Jiawen,TANG Yougang,LI Yan. Influence of aerodynamic imbalance on an offshore wind turbine during blade pitch fault[J].The Ocean Engineering,2017,35(3):37-43.(in Chinese))
    [4]贾娅娅.海上风力机运行与台风气动性能及尾流特性研究[D].天津:天津大学,2016.(JIA Yaya. Study of the aerodynamic characteristics and wake flow of the offshore wind turbine under the operational states and typhoon states[D].Tianjin:Tianjin University,2016.(in Chinese))
    [5]罗超. 3 MW海上风电机抗台风特性研究[D].厦门:集美大学,2014.(LUO Chao. Study on typhoon resistant characteristics of 3 MW offshore wind turbine[D]. Xiamen:Jimei University,2014.(in Chinese))
    [6]李红涛,李林斌.海上风机支撑结构分析[J].海洋工程,2011,29(4):74-80.(LI Hongtao,LI Linbin. Design analysis for support structures of offshore wind turbine[J]. The Ocean Engineering,2011,29(4):74-80.(in Chinese))
    [7]谭茂强,杨源,贾斌,等.海上风电机组抗台风技术研究[J].中国电力,2018,51(2):112-117.(TAN Maoqiang,YANG Yuan,JIA Bin,et al. Anti-typhoon technology research of offshore wind turbine[J]. Electric Power,2018,51(2):112-117.(in Chinese))
    [8]林敬华,裴爱国,马兆荣.台风区海上风电场基础结构设计可靠度初步分析[J].南方能源建设,2015,5(2):77-85.(LIN Jinghua,PEI Aiguo,MA Zhaorong. A preliminary reliability analysis of offshore wind turbine structure design in Typhoonprone areas[J]. Southern Energy Construction,2018,5(2):77-85.(in Chinese))
    [9] WANG W,GAO Z,LI X,et al. Model test and numerical analysis of an offshore bottom fixed pentapod wind turbine under seismic loads[C]∥Proceedings of the 35th International Conference on Ocean,Offshore and Arctic Engineering. 2016.
    [10] ZHENG X,LI H,RONG W,et al. Joint earthquake abd wave action on the monopile wind turbine foundation:An experimental study[J]. Marine Structures,2015,44:125-141.
    [11] KIM D H,LEE S G,LEE I K. Seismic fragility analysis of 5 MW offshore wind turbines[J]. Renewable Energy,2014,65:250-256.
    [12] MARDFEKRI M,GARDONI P. Multi-hazard reliability assessment of offshore wind turbines[J]. Wind Energy,2014,18(8):1433-1450.
    [13] ANASTASOPOULOS I,THEOFILOU M. Hybrid foundation for offshore wind turbines:environmental and seismic loading[J].Soil Dynamics and Earthquake Engineering,2016,80:192-209.
    [14]刘树杰,王忠涛,栾茂田.单向荷载作用下海上风机多桶基础承载特性数值分析[J].海洋工程,2010,28(1):31-35.(LIU Shujie,WANG Zhongtao,LUAN Maotian. Numerical analysis of bearing capacity behavior of multi-bucket suctional foundation for offshore wind turbine under monotonic loading[J]. The Ocean Engineering,2010,28(1):31-35.(in Chinese))
    [15] BAMPTON M,CRAIG R. Coupling of substructures for dynamic analyses[J]. Aiaa Journal,1968,6(7):1313-1319.
    [16] JONKMAN J,BUTTERFIELD S,MUSIAL W. Definition of a 5 MW reference wind turbine for offshore system development[R]. NTRL/TP-500-38060,2009.
    [17] ANSYS. ANSYS standard user's manual[S]. ANSYS Inc.,Canonsburg,PA. 2012.
    [18] DNV-OS-J101,Design of offshore wind turbine structures[S]. 2014.
    [19] IEC 61400-3,Design requirements for offshore wind turbines[S]. 2009.
    [20]邱桔斐.江苏沿海风浪特征研究[D].南京:河海大学,2005.(QIU Jufei. The study of wave and wind fields of Jiangsu coastline[D]. Nanjing:Hohai University,2005.(in Chinese))
    [21] IEC 61400-1,Wind turbines-Part 1:Design requirements[S]. 2010.
    [22] JTS 153-3-2007,海港工程钢结构防腐蚀技术规范[S]. 2007.(JTS 153-3-2007,Technical specification for corrosion protection of steel structure for sea port construction[S]. 2007.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700