基于有限元模型分析伸直型桡骨远端骨折的生物力学特点
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biomechanics characteristics of Colles distal radius fracture based on finite element analysis
  • 作者:张朝驹 ; 何川 ; 陈洪卫 ; 庞启雄 ; 万安 ; 刘道东 ; Tsang ; WWN ; 李孝林
  • 英文作者:Zhang Chaoju;He Chuan;Chen Hongwei;Pang Qixiong;Wan An;Liu Daodong;Tsang WWN;Li Xiaolin;the Third Clinical Medical School of Yangtze University (Jingzhou Hospital of Traditional Chinese Medicine;The Hong Kong Polytechnic University;Medical School of Yangtze University;
  • 关键词:腕关节 ; 桡骨 ; 有限元分析 ; 组织工程 ; 伸直型桡骨远端骨折 ; 应力分布 ; CT数据重建 ; 腕关节背伸跌倒 ; 腕关节背伸位模型
  • 英文关键词:,Wrist Joint;;Radius;;Finite Element Analysis;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:长江大学第三临床学院(荆州市中医医院);香港理工大学;长江大学医学院;
  • 出版日期:2019-02-25
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.869
  • 基金:the Special Project for Medical University of Health Commission of Hubei Province,No.WJ2016-Y-21(to ZCJ)~~
  • 语种:英文;
  • 页:XDKF201912019
  • 页数:5
  • CN:12
  • ISSN:21-1581/R
  • 分类号:100-104
摘要
背景:老年人跌倒所致桡骨远端骨折临床发生率较高,从生物力学上分析受伤机制、预防骨折发生的研究非常重要但相对不足。目的:探讨伸直型桡骨远端骨折的生物力学特性。方法:选取29岁健康男性志愿者1名,对其前臂、腕关节、手进行CT扫描。将扫描获得的CT图像导入三维成像软件Mimics10.01建立腕关节背伸损伤的有限元模型,约束模型的手掌面,给予模型一个大小为2m/s、方向垂直向下的速度载荷,观测载荷作用后腕关节软组织、骨骼的应力分布。结果与结论:建立了真实有效的腕关节背伸位有限元模型,载荷作用后软组织应力主要集中于手掌小鱼际以及腕背侧,骨骼应力背侧主要集中于尺桡骨下端,桡骨下端的应力最大、最集中,掌侧应力主要集中于尺桡骨中下段交界偏下处以及腕中部,尺桡骨的应力分布不对称。研究结果可用于伸直型桡骨远端骨折损伤机制的解释,可为腕关节背伸跌倒损伤的预防提供一定的生物力学依据。
        BACKGROUND: Incidence of distal radius fracture caused by fall in older adults is high in the clinic. Studying the pathogenesis and preventing fracture in view of biomechanics are critical, but is little reported. OBJECTIVE: To explore the biomechanical characteristics of Colles distal radius fracture. METHODS: A healthy male 29-year-old volunteer was selected, and CT scanning of the forearm, wrist and hand was taken. CT data were imported into Mimics 10.01 software to establish the finite element model of distal radius fracture in extended wrist. Palm side of the model was restricted, and imposed a speed load at 2 m/s and vertical direction. Afterwards, the stress distribution on the soft tissues and bones of wrist was observed. RESULTS AND CONCLUSION: A real and effective finite element model of the distal radius fracture in extended wrist was established. After loading, the stress of soft tissues mainly concentrated on the hypothenar of palm and wrist dorsal region. The stress of bones mainly concentrated on the bottom of ulna and radius. Stress on the dorsal radius was largest. The volar stress mainly concentrated on the middle and low segments of ulna and radius and middle of wrist. The stress of ulna and radius was asymmetry. These results can be used for the explaining the mechanism of Colles distal radius fractures and provide the biomechanical basis for the prevention of fall-induced fracture.
引文
[1]Davis DI,Baratz M.Soft tissue complications of distal radius fractures.Hand C1in.2010;26(2):229-235.
    [2]Abe Y,Fujii K.Arthroscopic-assisted reduction of intra-articular distal radius fracture.Hand Clin.2017;33(4):659-668.
    [3]Suda AJ,Schamberger CT,Viergutz T.Donor site complications following anterior iliac crest bone graft for treatment of distal radius fractures.Arch Orthop Trauma Surg.2018.doi:10.1007/s00402-018-3098-3.
    [4]Ficke B,Ransom EF,Hess MC,et al.Outcomes of staged treatment for complex distal radius fractures.Cureus.2018;10(9):e3273.
    [5]Gu WL,Wang J,Li DQ,et al.Bridging external fixation versus non-bridging external fixation for unstable distal radius fractures:A systematic review and meta-analysis.JOrthop Sci.2016;21(1):24-31.
    [6]Yang Z,Yuan ZZ,Ma JX,et al.Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures:a meta-analysis.Zhonghua Yi Xue Za Zhi.2017;97(41):3269-3272.
    [7]Chen K,Yang G,Ma C,et al.A meta-analysis of unstable fracture of distal radius treated with plate internal fixation and external fixator.Zhonguo Zuzhi Gongcheng Yanjiu Zazhi.2013;17(39):6962-6968.
    [8]Taylor BC,Malarkey AR,Eschbaugh RL,et al.Distal radius skyline view:how to prevent dorsal cortical penetration.JSurg Orthop Adv.2017;26(3):183-186.
    [9]Mathews AL,Chung KC.Management of complications of distal radius fractures.Hand Clin.2015;31(2):205-215.
    [10]Taddei F,Pancanti A,Viceconti M.An improved method for the automatic mapping of computed tomography numbers onto finite element models.Med Eng Phys.2004;26(1):61-69.
    [11]Brekelmans WA,Poort HW,Slooff TJ.A new method to analyse the mechanical behaviour of skeletal parts.Acta Orthop Scand.1972;43(5):301-317.
    [12]Sabalic S,Kodvanj J,Pavic A.Comparative study of three models of extra-articular distal humerus fracture osteosynthesis using the finite element method on an osteoporotic computational model.Injury.2013;44:S56-61.
    [13]Wirth AJ,Müller R,van Lenthe GH.The discrete nature of trabecular bone microarchitecture affects implant stability.JBiomech.2012;45(6):1060-1067.
    [14]Büchler P,Farron A.Benefits of an anatomical reconstruction of the humeral head during shoulder arthroplasty:a finite element analysis.Clin Biomech(Bristol,Avon).2004;19(1):16-23.
    [15]Fürnstahl P,Székely G,Gerber C,et al.Computer assisted reconstruction of complex proximal humerus fractures for preoperative planning.Med Image Anal.2012;16(3):704-720.
    [16]Chandler JW,Stabile KJ,Pfaeffle HJ,et al.Anatomic parameters for planning of interosseous ligament reconstruction using computer-assisted techniques.J Hand Surg(Am).2003;28(1):111-116.
    [17]Cheng HY,Lin CL,Lin YH,et al.Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture.Clin Biomechanics(Bristol,Avon).2007;22(5):510-517.
    [18]Ledoux P,Lamblin D,Wuilbaut A,et al.A finite-element analysis of Kienbock’s Disease.J Hand Surg Eur Vol.2008;33(3):286-291.
    [19]Majumder S,Roychowdhury A,Pal S.Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations.J Biomech.2008;41(13):2834-2842.
    [20]Majumder S,Roychowdhury A,Pal S.Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.Med Eng Phys.2007;29(10):1167-1178.
    [21]Nazar MA,Mansingh R,Bassi RS,et al.Is there a consensus in the management of distal radial fractures.Open Orthop J.2009;3:96-99.
    [22]Araf M,Mattar Junior R.Arthroscopic study of injuries in articular fractures of distal radius extremity.Acta Ortop Bras.2014;22(3):144-150.
    [23]Sherrington C,Whitney JC,Lord SR,et al.Effective exercise for the prevention of falls:a systematic review and meta-analysis.J Am Ger-iatric Soc.2011;6(12):2234-2243.
    [24]Machold W.Reduction of severe wrist injuries in snowboarding by an optimized wrist protection device:a prospective randomized trial.J Trauma.2009;52:517-520.
    [25]Bhatia VA,Edwards WB,Troy KL.Predicting surface strains at the human distal radius during an in vivo loading task-finite element model validation and application.JBiomech.2014;47(11):2759-2765.
    [26]Christen P,Ito K,Knippels I,et al.Subject-specific bone loading estimation in the human distal radius.J Biomech.2013;46(4):759-766.
    [27]Ani Ural,Susan Mischinski.Multiscale modeling of bone fracture using cohesive finite elements.Eng Fract Mech.2013;103(4):141-152.
    [28]Chen AC,Lin YH,Kuo HN,et al.Design optimisation and experimental evaluation of dorsal double plating fixation for distal radius fracture.Injury.2013;44(4):527-534.
    [29]Burkhart TA,Andrews DM.The effectiveness of wrist guards for reducing wrist and elbow accelerations resulting from simulated forward falls.J Appl Biomech.2010;3:281-289.
    [30]Dong X,Wang D,He J,et al.Finite element analysis of anti-impact loading of wrist protectors.Zhongguo Zuzhi Gongcheng Yanjiu Zazhi.2011;5(30):5531-5534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700