基于低场核磁共振技术的不同干燥过程中光皮木瓜水分迁移规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on moisture transfer laws of Chaenomeles sinensis during drying process based on low-field NMR
  • 作者:陈衍男 ; 赵恒强 ; 卢丙 ; 王晓 ; 崔莉 ; 郭兰萍
  • 英文作者:CHEN Yan-nan;ZHAO Heng-qiang;LU Bing;WANG Xiao;Cui Li;Guo Lan-ping;Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology(Shandong Academy of Sciences);College of Food Science and Engineering, Shandong Agricultural University;Suzhou Niumag Co., Ltd.;
  • 关键词:光皮木瓜 ; 水分 ; 干燥 ; 低场核磁共振技术 ; 横向弛豫时间
  • 英文关键词:Chaenomeles sinensis(Thouin) Koehne;;moisture;;drying;;low-field nuclear magnetic resonance(LF-NMR);;transverse relaxation time
  • 中文刊名:ZCYO
  • 英文刊名:Chinese Traditional and Herbal Drugs
  • 机构:齐鲁工业大学(山东省科学院)山东省分析测试中心山东省中药质量控制技术重点实验室;山东农业大学食品科学与工程学院;苏州纽迈分析仪器有限公司;
  • 出版日期:2018-09-12
  • 出版单位:中草药
  • 年:2018
  • 期:v.49;No.628
  • 基金:现代农业产业技术体系建设专项资金(CARS-21);; 山东省科学院先导专项;; 山东省泰山学者岗位专家支持项目
  • 语种:中文;
  • 页:ZCYO201817009
  • 页数:7
  • CN:17
  • ISSN:12-1108/R
  • 分类号:51-57
摘要
目的研究不同干燥过程中光皮木瓜水分迁移变化规律。方法利用低场核磁共振(LF-NMR)技术无损、非侵入的技术优势,监测不同干燥方式(热风干燥、蒸制后干燥、分段式干燥、阴干)下光皮木瓜的横向弛豫时间(T2)反演谱,分析水分迁移变化。结果新鲜光皮木瓜片中含有3种状态的水,其含量为自由水>结合水>不易流动水,热风干燥、蒸制后干燥、阴干的规律相似,总水分逐渐散失,水分与非水组分的结合力会增强,蒸制加快了木瓜片的失水率,蒸制后干燥与热风干燥下木瓜片失水速率有显著性差异(P<0.05)。分段式烘干中,干燥的间歇阶段会发生不同状态水分之间的转换,以重新达到相对稳定的平衡状态。低温干燥对木瓜组织破坏较小,更利于组织中不易流动水转化为自由水,进而较快散失,而高温干燥在前期就对木瓜片组织结构造成破坏,组织收缩变形,水分与非水组织间的结合力出现短暂增强的现象。结论光皮木瓜干燥过程中3种状态的水分含量与LF-NMR T_2谱的峰面积有较高的相关性,LF-NMR技术为光皮木瓜中水分分布及变化规律研究提供了直观的参考依据,为木瓜的加工开发提供理论基础。
        Objective To study the moisture transfer laws of Chaenomeles sinensis in different drying processes. Methods Using the non-destructive and non-invasive technique of low field-nuclear magnetic resonance(LF-NMR), the transverse relaxation time(T2) inversion spectrum of C. sinensis slice was monitored under different drying methods(hot air drying, drying after evaporation, segmental drying and drying in the shade) to analyze the changes of moisture migration. Results There were three different types water that were detected in C. sinensis(free water > bound water > immobilized water). The internal water distribution and water content changed during drying process. The moisture changes were similar in hot air drying, drying after steaming, and drying in shade, the total water gradually decreased, and the combining degree between moisture and non-water components enhanced. Steaming promoted the water loss rate of C. sinensis slice, the water loss rate was higher in drying after steaming than in hot air drying, and the difference was significant(P < 0.05). During the intermittent drying, the conversion of different states of water would occur in order to return to a relatively stable equilibrium. During the low temperature drying process, immobilized water content decreased and free water content increased. The low-temperature drying has less damage to the tissue, which is more conducive to the conversion of immobilized water into free water, and thus the water dissipated faster. During the early of drying, high temperature caused tissue structure damage, the bonding force between water and non-aqueous tissue would be strengthened because of the tissue shrinkage. Conclusion The three different types water content and peak area in T2 was positively correlated. The LF-NMR technique would provide useful guides for the investigation of water distribution and variation of C. sinensis, which will provide a theoretical basis for C. sinensis processing.
引文
[1]刘世尧,白志川,李加纳.皱皮木瓜与光皮木瓜品质多性状指标综合评价[J].中国中药杂志,2012,37(7):901.
    [2]尹震花,赵晨,张娟娟,等.光皮木瓜的化学成分及药理活性研究进展[J].中国实验方剂学杂志,2017,23(9):221-229.
    [3]徐怀德,秦盛华.超声波辅助提取光皮木瓜多糖及其体外抗氧化性研究[J].食品科学,2010,31(10):106-111.
    [4]Gao H Y,Wu L J,Kuroyanagi M.A new compound from Chaenomeles sinensis(Thouin)Koehne[J].Chin Chem Lett,2003,14(3):274-275.
    [5]于生,张丽,单鸣秋,等.UFLC-MS法同时测定木瓜饮片中8种有机酸[J].中草药,2016,47(14):2465-2469.
    [6]张林,张兵,李博,等.木瓜蛋白酶对兔膝关节骨关节炎滑膜病变的诱导作用[J].药物评价研究,2018,41(1):78-82.
    [7]纪学芳,徐怀德,刘运潮,等.光皮木瓜黄酮和多糖降血脂与抗氧化作用研究[J].中国食品学报,2013,13(9):1-7.
    [8]冯协和,陈科力,刘义梅.木瓜抗氧化活性研究进展[J].医药导报,2016,35(5):491-495.
    [9]谭秋生,罗敏,任星宇,等.两种木瓜不同加工品中熊果酸和齐墩果酸含量的高效液相色谱法测定[J].时珍国医国药,2016,27(3):620-621.
    [10]李琼,刘乐全,徐怀德,等.光皮木瓜中有机酸成分研究[J].西北农业学报,2008,17(1):207-210.
    [11]Li S,Guo L,Liu C,et al.Combination of supercritical fluid extraction with counter-current chromatography to isolate anthocyanidins from the petals of Chaenomeles sinensis based on mathematical calculations[J].J Sep Sci,2013,36(21/22):3517-3526.
    [12]Fan D,Ma S,Wang L,et al.1H NMR studies of starchwater interactions during microwave heating[J].Carbohydr Polym,2013,97(2):406-412.
    [13]段文娟,李月,崔莉,等.低场核磁共振及成像技术分析白芍炮制过程中水分变化规律[J].中国中药杂志,2017,42(11):2092-2096.
    [14]Xiao Q,Lim L T,Zhou Y,et al.Drying process of pullulan edible films forming solutions studied by low-field NMR[J].Food Chem,2017,230(17):611-617.
    [15]李然,李振川,陈珊珊,等.应用低场核磁共振研究绿豆浸泡过程[J].食品科学,2009,30(15):137-141.
    [16]Shao J H,Deng Y M,Song L,et al.Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique[J].LWT-Food Sci Technol,2016,66(3):1-6.
    [17]Li M,Wang H,Zhao G,et al.Determining the drying degree and quality of chicken jerky by LF-NMR[J].J Food Eng,2014,139(139):43-49.
    [18]邵小龙,宋伟,李云飞.粮油食品低场核磁共振检测技术研究进展[J].中国粮油学报,2013,28(7):114-118.
    [19]Monakhova Y B,Kuballa T,Tschiersch C,et al.Rapid NMR determination of inorganic cations in food matrices:Application to mineral water[J].Food Chem,2017,221(4):1828-1833.
    [20]马申嫣,范大明,王丽云,等.微波加热对马铃薯淀粉颗粒内部水状态及分布的影响[J].现代食品科技,2015,31(5):219-225.
    [21]食品安全国家标准·食品中水分的测定(GB-5009.3-2016)[S].2016.
    [22]阮榕生.核磁共振技术在食品和生物体系中的应用[M].北京:中国轻工业出版社,2009.
    [23]Xiao Q,Lim L T,Zhou Y,et al.Drying process of pullulan edible films forming solutions studied by low-field NMR[J].Food Chem,2017,230(9):611-617.
    [24]修彦凤,曹艳花,王平.多指标综合评价优选木瓜润法和蒸法软化的炮制工艺[J].时珍国医国药,2009,20(5):1247-1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700