细节保持的SPH流体形变约束控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detail-Preserving Shape Deformation in SPH Fluid Control
  • 作者:冯刚 ; 刘世光
  • 英文作者:Feng Gang;Liu Shiguang;School of Computer Science and Technology, Tianjin University;Tianjin Key Laboratory of Cognitive Computing and Application;
  • 关键词:流体模拟 ; 流体控制 ; 细节保持 ; 流体形变 ; SPH
  • 英文关键词:fluid simulation;;fluid control;;detail preserving;;fluid deformation;;SPH
  • 中文刊名:XTFZ
  • 英文刊名:Journal of System Simulation
  • 机构:天津大学计算机科学与技术学院;天津市认知计算与应用重点实验室;
  • 出版日期:2018-06-08
  • 出版单位:系统仿真学报
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金(61672375,61170118);; 天津市自然科学基金(14JCQNJC00100)
  • 语种:中文;
  • 页:XTFZ201806047
  • 页数:9
  • CN:06
  • ISSN:11-3092/V
  • 分类号:377-385
摘要
在流体控制研究中,保留丰富的流体运动细节和控制流体在不同目标形状之间形变是极具挑战性的一类问题。为了解决这类问题,提出一种细节保持的SPH流体形变约束控制新方法。将目标形状分为源模型和目标模型,并分别对其体素化得到源控制粒子和目标控制粒子。根据源和目标控制粒子的空间对应关系驱动源控制粒子移动,并通过控制粒子的运动驱动流体粒子运动以实现流体形变。通过源到目标粒子的能量转移方法避免流体形变过程控制力缺失的问题,以保留丰富的流体细节。通过不同的实验场景验证了该方法的有效性。
        It remains a challenging problem to drive particles-based fluid simulation to match target shape and deform fluid shape between different models smoothly in fluid control, especially when the natural fluid motion should be preserved. To achieve the desired behavior, the models are divided into source objects and target objects, and the control particles are generated from them. According to a space point correspondence between source control particles and target control particles, the control particles' movements are calculated which drive fluid to match different models. The control energy from source control particles is transferred to target control particles so as to avoid the leak of control energy and preserving fluid detail. The effectiveness of the method was demonstrated in various scenarios.
引文
[1]Zhang Xiao Yong,Liu Shi Guang.SPH fluid control with self-adaptive turbulent details[J].Computer Animation and Virtual Worlds(S1546-4261),2015,26(3):357-366.
    [2]Thürey N,Keiser R,Pauly M,et al.Detail-preserving fluid control[J].Graphical Models(S1524-0703),2009,71(6):221-228.
    [3]Fattal R,Lischinski D.Target-driven smoke animation[J].ACM Transactions on Graphics(TOG)(S0730-0301),2004,23(3):441-448.
    [4]Madill J,Mould D.Target particle control of smoke simulation[C]//Proceedings of Graphics Interface 2013.Ontario,Canada,2013:125-132.
    [5]Fedkiw R,Stam J,and Jensen H W.Visual simulation of smoke[C]//Proceedings of the 28th annual conference on Computer graphics and interactive techniques.Los Angeles,CA,USA,2001:15-22.
    [6]Adams B,Pauly M,Keiser R,Guibas LJ.Adaptively sampled particle fluids[J].ACM Transactions on Graphics(TOG)(S0730-0301),2007,26(3):48.
    [7]Solenthaler B,Gross M.Two-scale particle simulation[J].ACM Transactions on Graphics(TOG)(S0730-0301),2011,30(4):81.
    [8]Losasso F,Gibou F,Fedkiw R.Simulating water and smoke with an octree data structure[J].ACM Transactions on Graphics(TOG)(S0730-0301),2004,23(3):457-462.
    [9]Selle A,Rasmussen N,Fedkiw R.A vortex particle method for smoke,water and explosions[J].ACM Transactions on Graphics(TOG)(S0730-0301),2005,24(3):910-914.
    [10]Park S I,Kim M J.Vortex fluid for gaseous phenomena[C]//Proceedings of the 2005 ACM SIGGRAPH Eurographics symposium on Computer animation,Los Angeles,California,USA,2005:261-270.
    [11]Yoon J C,Kam H R,Hong J M,et al.Procedural synthesis using vortex particle method for fluid simulation[J].Computer Graphics Forum(S0167-7055),2009,28(7):1853-1859.
    [12]Pfaff T,Thuerey N,Cohen J,et al.Scalable fluid simulation using anisotropic turbulence particles[J].ACM Transactions on Graphics(TOG)(S0730-0301),2010,29(6):174.
    [13]Rasmussen N,Enright D,Nguyen D,et al.Directable photorealistic liquids[C]//Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation.Switzerland,2004:193-202.
    [14]Cornelis J,Ihmsen M,Teschner M.Liquid boundaries for implicit incompressible SPH[J].Computers&Graphics(S0097-8493),2015,52(C):72-78.
    [15]Bo Ren,Chen-Feng Li,Ming C Lin,et al.Flow field modulation[J].IEEE Transactions on Visualization and Computer Graphics(S1077-2626),2013,19(10):1708-1719.
    [16]N Foster,D Metaxas.Controlling fluid animation[C]//Proceedings of Computer Graphics International,1997:178-188.
    [17]Treuille A,Mc Namara A,Popovic Z,et al.Keyframe control of smoke simulations[J].ACM Transactions on Graphics(TOG)(S0730-0301),2003,22(3):716-716.
    [18]Shi Lin,Yu Yi-Zhou.Controllable smoke animation with guiding objects[J].ACM Transactions on Graphics(TOG)(S0730-0301),2005,24(1):140-164.
    [19]Shi Lin,Yu Yi-Zhou.Taming liquids for rapidly changing targets[C]//Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation.Los Angeles,CA,USA,2005:229-236.
    [20]Hong J,Kim C.Controlling fluid animation with geometric potential[J].Computer Animation and Virtual Worlds(S1546-4261),2004,15(34):147-157.
    [21]Dionne O,de Lasa M.Geodesic voxel binding for production character meshes[C]//Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation.Anaheim,CA,USA,2013:173-180.
    [22]Zhang Shuai,Yang Xu Bo,Wu Zi Qi,et al.Position-based fluid control[C]//Proceedings of the 19 th Symposium on Interactive 3D Graphics and Games.San Francisco,USA,2015:61-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700