钛铜合金纳米管形貌能够降低细菌活性并促进成骨细胞功能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Titanium-copper alloys with nanotubular coatings increase antibacterial abilities and osteoblast functions
  • 作者:张磊 ; 张杭州 ; Allieu ; Kamara
  • 英文作者:Zhang Lei;Zhang Hangzhou;Allieu Kamara;First Department of Orthopedics, Third Affiliated Hospital of Jinzhou Medical University;Department of Sports Medicine/Joint Surgery, First Affiliated Hospital of China Medical University;China Medical University;
  • 关键词:组织工程 ; ; 葡萄球菌 ; 金黄色 ; 成骨细胞 ; 钛铜合金纳米管 ; 抗菌性能 ; 金黄色葡萄球菌 ; 组织工程骨材料 ; 内植物
  • 英文关键词:,Tissue Engineering;;Titanium;;Staphylococcus aureus;;Osteoblasts
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:锦州医科大学附属第三医院骨一科;中国医科大学附属第一医院运动医学与关节外科;中国医科大学;
  • 出版日期:2018-10-24 10:29
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.859
  • 基金:the National Natural Science Foundation of China,No.81671811;the National Natural Science Foundation of China(Youth Foundation),No.81501857(to ZHZ);; Liaoning Provincial Reform Project for Key Clinical Diagnosis and Treatment,No.LNCCC-A03-2014;; the Natural Science Foundation of Liaoning Province,No.LK201642;; Special Science and Technology Research Project for Population and Health in Shenyang,No.F15-139-9-23~~
  • 语种:英文;
  • 页:XDKF201902003
  • 页数:7
  • CN:02
  • ISSN:21-1581/R
  • 分类号:7-13
摘要
背景:植入物的感染仍然是严重的骨科术后不良反应。铜是一种目前已知具有抗菌性能的金属。研究表明,通过纳米技术制备纳米结构金属可以促进成骨细胞在体内的黏附、增殖和骨结合。临床上最常见的重要植入物相关病原菌-金黄色葡萄球菌,是用来测试抗菌性能的钛-铜合金纳米管。目的:观察钛-铜合金纳米管的抗菌能力及对成骨细胞功能的影响。方法:实验将不同材料(纯钛、钛纳米管及5%-钛铜合金纳米管)与小鼠成骨细胞(MC-3T3-E1)共培养6,24h,观察细胞在支架上的黏附和增殖。比较了钛-铜合金纳米管、纯钛纳米管和纯钛的抗菌性能。在各组材料形貌表面种植成骨细胞检测其生物相容性,在各组材料表面种植金黄色葡萄球菌检测其抗菌性能。结果与结论:(1)扫描电镜可见,钛纳米管和钛-铜合金纳米管表面良好的细胞黏附性,小鼠成骨细胞形态良好,排列规则;纳米管组细胞增殖情况优于纯钛组,而钛-铜合金纳米管与钛纳米管组差异无显著性意义;(2)细菌黏附实验显示,与钛铜合金纳米管相比,钛金属和TiO2纳米管上的细菌数量更多;(3)结果证实,钛-铜合金纳米管对细菌黏附具有良好的抑制作用,不影响成骨细胞的生物功能。
        BACKGROUND:Implant infection is still a serious adverse event after orthopedic surgery. Copper (Cu) is a currently known metal that has antibacterial properties. Studies have shown that nanostructured metals prepared by nanotechnology can promote the adhesion, proliferation and osseointegration of osteoblasts in vivo.Staphylococcus aureus, the most common implant-related pathogen in clinical practice, is used to test antibacterial properties of titanium-copper alloy nanotubes.OBJECTIVE:To observe the effect of antibacterial properties of titanium-copper alloy nanotubes on the function of osteoblasts.METHODS:Mouse osteoblasts (MC-3T3-E1) were co-cultured with different materials, including pure titanium,titanium dioxide nanotubes, and titanium-copper alloy nanotubes with a copper content of 5%, for 6 and 24hours. Cell adhesion and proliferation on the scaffold were observed. Antibacterial properties of titanium-copper alloy nanotubes, titanium dioxide nanotubes and pure titanium were compared. Biocompatibility of osteoblasts co-cultured on different material surfaces was detected, and antibacterial properties of different materials to Staphylococcus aureus were measured.RESULTS AND CONCLUSION:(1) Under scanning electron microscope, we observed good cell adhesion onto the surface of titanium dioxide nanotubes and titanium-copper alloy nanotubes, and the adherent cells had good cell morphology and regular arrangement. Cell proliferation of osteoblasts was better in the two nanotube groups than in the pure titanium group, but there was no significant difference between the titanium-copper alloy nanotube and titanium dioxide nanotube groups.(2) Higher bacteria counts were observed in the pure titanium and titanium dioxide nanotube groups than the titanium-copper alloy nanotube group. In conclusion, the titanium-copper alloy nanotubes have good inhibitory effect on bacterial adhesion, and have no influence on the bio-functions of osteoblasts.
引文
[1]Weiss RJ,Thorsell M,Stark A,et al.2-to 9-year outcome of stemmed total knee arthroplasty.Similar failure rates in patients when used primary or as a revision.Acta Orthop.2014;85(6):609-613.
    [2]Dale H,Hallan G,Hallan G,et al.Increasing risk of revision due to deep infection after hip arthroplasty.Acta Orthop.2009;80(6):639-645.
    [3]Martínez-Pastor JC,Maculé-Beneyto F,Suso-Vergara S.Acute infection in total knee arthroplasty:diagnosis and treatment.Open Orthop J.2013;7:197-204.
    [4]Crowninshield RD,Rosenberg AG,Sporer SM.Changing demographics of patients with total joint replacement.Clin Orthop Relat Res.2006;443:266-272.
    [5]Donlan RM,Costerton JW.Biofilms:survival mechanisms of clinically relevant microorganisms.Clin Microbiol Rev.2002;15(2):167-193.
    [6]Gilbert P,Collier PJ,Brown MR.Influence of growth rate on susceptibility to antimicrobial agents:biofilms,cell cycle,dormancy,and stringent response.Antimicrob Agents Chemother.1990;34(10):1865-1868.
    [7]Donlan RM.Biofilms and device-associated infections.Emerg Infect Dis.2001;7:277-281.
    [8]Park J,Bauer S,Schmuki P,von der Mark K.Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces.Nano Lett.2009;9(9):3157-3164.
    [9]Park J,Bauer S,von der Mark K,et al.Nanosize and vitality:TiO2nanotube diameter directs cell fate.Nano Lett.2007;7(6):1686-1691.
    [10]Popat KC,Leoni L,Grimes CA,et al.Influence of engineered titania nanotubular surfaces on bone cells.Biomaterials 2007;28:3188-3197.
    [11]Brammer KS,Oh S,Cobb CJ,et al.Improved bone-forming functionality on diameter-controlled TiO(2)nanotube surface.Acta Biomater.2009;5(8):3215-3223.
    [12]Bjursten LM,Rasmusson L,Oh S,et al.Titanium dioxide nanotubes enhance bone bonding in vivo.J Biomed Mater Res A.2010;92(3):1218-1224.
    [13]Zhang HZ,Sun Y,Tian A,et al.Improved antibacterial activity and biocompatible on the vancomycin-loaded TiO2 nanotubes:in vivo and in vitro studies,International J Nanomed 2013;8:4379-4389.
    [14]Cook JL,Scott RD,Long WJ.Late hematogenous infections after total knee arthroplasty:experience with 3013 consecutive total knees.J Knee Surg.2007;20(1):27-33.
    [15]Schmalzried TP,Amstutz HC,Au MK,et al.Etiology of deep sepsis in total hip arthrosplasty.The significance of hematogenous and recurrent infections.Clin Orthop Rel Res.1992;280:200-207.
    [16]Zhang E,Li F,Wang H,et al.A new antibacterial titanium-copper sintered alloy:Preparation and antibacterial property.Mater Sci Eng C Mater Biol Appl.2013;33(7):4280-4287.
    [17]Tian XB,Wang ZM,Yang SQ,et al.Antibacterial copper-containing titanium nitride films produced by dual magnetron sputtering,Surf Coat Technol.2007;201:8606-8609.
    [18]Secinti KD,Ayten M,Kahilogullari G,et al.Antibacterial effects of electrically activated vertebral implants.J Clin Neurosci 2008;15(4):434-439.
    [19]Wan YZ,Xiong GY,Liang H,et al.Modification of medical metals by ion implantation of copper.Appl Surf Sci.2007;253:9426-9429.
    [20]Colon G,Ward BC,Webster TJ.Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase Zn O and TiO2.J Biomed Mater Res A.2006;78(3):595-604.
    [21]Melaiye AYW.Silver and its application as an antimicrobial agent.Expert Opin Ther Pat.2005;15:125-130.
    [22]Zheng X,Chen Y,Xie Y,et al.Antibacterial property and biocompatibility of plasma sprayed hydroxyapatite/silver composite coatings.Repentu Jishu Zazhi.2009;18:463.
    [23]Azam A,Ahmed AS,Oves M,et al.Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains.Int J Nanomedicine.2012;7:3527-3535.
    [24]Tsao N,Luh TY,Chou CK,et al.In vitro action of carboxyfullerene.JAntimicrob Chemother.2002;49(4):641-649.
    [25]Ercan B,Taylor E,Alpaslan E et al.Diameter of titanium nanotubes influences anti-bacterial efficacy.Nanotechnology.2011;22(29):295102.
    [26]Helmus MN,Gibbons DF,Cebon D.Biocompatibility:meeting a key functional requirement of next-generation medical devices.Toxicol Pathol.2008;36(1):70-80.
    [27]Puckett SD,Taylor E,Raimondo T,et al.The relationship between the nanostructure of titanium surfaces and bacterial attachment.Biomaterials.31:706-713.
    [28]Oh SH,Fin?nes RR,Daraio C,et al.Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.Biomaterials.2005;26(24):4938-4943.
    [29]Kim HM,Himeno T,Kawashita M,et al.Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.J Biomed Mater Res.2003;67A(4):1305-1309.
    [30]Qian T,Wang Y.Micro/nano-fabrication technologies for cell biology.Med Biol Eng Comput.2010;48(10):1023-1032.
    [31]Meyer U,Büchter A,Wiesmann HP,et al.Basic reactions of osteoblasts on structured material surfaces.Eur Cell Mater.2005;9:39-49.
    [32]Beutner R,Michael J,Schwenzer B,et al.Biological nano-functionalization of titanium-based biomaterial surfaces:a flexible toolbox.J R Soc Interface.2010;6;7 Suppl 1:S93-S105.
    [33]Popat KC,Eltgroth M,Latempa TJ,et al.Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.Biomaterials.2007;28(32):4880-4888.
    [34]Ren L,Wong HM,Yan CH,et al.Osteogenic ability of Cu-bearing stainless steel.J Biomed Mater Res B Appl Biomater.2015;103(7):1433-1444.
    [35]Stoodley P,Ehrlich GD,Sedghizadeh PP,et al.Orthopaedic biofilm infections.Curr Orthop Pract.2011;22(6):558-563.
    [36]Hetrick EM,Schoenfisch MH.Reducing implant-related infections:active release strategies.Chem Soc Rev.2006;35(9):780-789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700