耦合模式FGOALS-g2中大西洋经向翻转流对3个典型浓度路径的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Atlantic Meridional Overturning Circulation in FGOALS-g2 Model to Three Representation Concentration Pathways
  • 作者:黄文誉 ; 王斌 ; 李立娟 ; 董文浩 ; 石燕燕
  • 英文作者:HUANG Wenyu;WANG Bin;LI Lijuan;DONG Wenhao;SHI Yanyan;Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences;
  • 关键词:AMOC指数 ; AMOC扩展指数 ; FGOALS-g2 ; 恢复 ; 典型浓度路径
  • 英文关键词:AMOC index,AMOC extending index,FGOALS-g2,Recovering,Representation concentration pathways
  • 中文刊名:QHYH
  • 英文刊名:Climatic and Environmental Research
  • 机构:清华大学地球系统数值模拟教育部重点实验室/清华大学地球系统科学研究中心;中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室;
  • 出版日期:2014-11-20
  • 出版单位:气候与环境研究
  • 年:2014
  • 期:v.19;No.92
  • 基金:国家重点基础研究发展计划项目2011CB309704;2010CB951904
  • 语种:中文;
  • 页:QHYH201406002
  • 页数:13
  • CN:06
  • ISSN:11-3693/P
  • 分类号:14-26
摘要
利用2个关于大西洋经向翻转流(Atlantic Meridional Overturning Circulation,AMOC)的指数:AMOC指数(15oN~65oN、深度为500 m以下的AMOC的最大值)和AMOC扩展指数(15oN~65oN、深度为2000~2500m的AMOC的最大值),研究了耦合模式FGOALS-g2(Grid-point Version 2 of Flexible Global Ocean-AtmosphereLand System Model)中的AMOC在CMIP5(Coupled Model Intercomparison Project Phase 5)的3个典型浓度路径(Representation Concentration Pathways,RCP)(RCP2.6、RCP4.5和RCP8.5分别对应于2100年时490、650和1370 ppm的CO2浓度水平)下的响应问题,发现:在RCP2.6和RCP4.5浓度路径下,2006~2040年时间段内AMOC指数和AMOC扩展指数都呈现快速下降的趋势,2041~2100年时间段内AMOC指数逐渐恢复,AMOC扩展指数基本维持不变;在RCP8.5浓度路径下,2006~2100年时间段内AMOC指数和AMOC扩展指数都表现出快速下降的趋势。通过分析FGOALS-g2中北大西洋深水的成因发现:3个典型浓度路径下AMOC的长期变化趋势主要受到GIN(Greenland–Iceland–Norwegian)海域的深水形成率的调控,而AMOC的年代际尺度的变化则主要受到Labrador海域深水形成率的控制。同时揭示了:由于北大西洋2000 m深度附近的层结稳定性在RCP2.6和RCP4.5下(相比于1980~2005年)提高了30%~40%,使得由AMOC指数恢复产生的深水无法继续下沉,从而导致AMOC扩展指数没有出现恢复的现象。
        This study investigates the responses of the Atlantic Meridional Overturning Circulation(AMOC) simulated by the FGOALS-g2(grid-point version 2 of Flexible Global Ocean-Atmosphere-Land System model) to three different RCPs(Representation Concentration Pathways) of CMIP5(Coupled Model Intercomparison Project Phase 5). In this investigation, two indices are used:(1) The AMOC index, defines as the maximum value of AMOC between 15°N and 65°N, at depths greater than 500 m, and(2) AMOC extending index, which is the maximum value of AMOC between 15°N and 65°N, and between 2000-m and 2500-m depth. It is found that under RCP2.6 and RCP4.5, both the AMOC index and the AMOC extending index show decreasing trends from 2006 to 2040, following which the AMOC index presents a increasing trend and the AMOC extending index maintains its high value between 2041 and 2100. In contrast, under RCP8.5, rapid decreasing trends are been identified in the time series of both the AMOC index and the AMOC extending index. Through analysis of the mechanism of formation of the North Atlantic deep water, the main component of AMOC, it can be concluded that the long-term trends in AMOC are determined by deep water formation in the Greenland–Iceland–Norwegian(GIN) Seas, while the decadal variability of AMOC is modulated by deep water formation in the Labrador Sea. Meanwhile, it can be shown that due to the stratification stability at around 2000-m depth in the Northern Atlantic Ocean increasing by 30%–40% under RCP2.6 and RCP4.5, the increasing deep water, indicated by the recovering AMOC index, could not sink down any further, which is the reason for the non-recovery of the AMOC extending index.
引文
Bellenger H,Guilyardi E,Leloup J,et al.2014.ENSO representation inclimate models:From CMIP3 to CMIP5[J].Climate Dyn.,42:1999–2018,doi:10.1007/s00382-013-1783-z.Bryden H L,Imawaki S.2001.Ocean heat transport[M]//OceanCirculation and Climate.International Geophysics Series.Siedler G,Church J,Gould J,Eds.Academic,455–474.Craig A P,Jacob R L,Kauffman B,et al.2005.CPL6,the new extensible,high performance parallel coupler for the community climate systemmodel[J].International Journal of High Performance ComputingApplication,19:308–327.Cunningham S A,Kanzow T,Rayner D,et al.2007.Temporal variability ofthe Atlantic Meridional overturning circulation at 26.5°N[J].Science,317(5840):935–938,doi:10.1126/science.1141304.Huang W Y,Wang B,Li L J,et al.2014.Variability of atlantic meridionaloverturning circulation in FGOALS-g2[J].Advances in AtmosphericSciences,31:95–109,doi:10.1007/s00376-013-2155-7.Huang B H,Zhang S Q.2012.Multidecadal oscillation of the Atlanticmeridional overturning circulation and its climate influences in coupledclimate systems[C].International Commission on DynamicalMeteorology.Kunming:China.Kara A B,Hurlburt H E,Wallcraft A J.2005.Stability-dependent exchangecoefficients for air-sea fluxes[J].J.Atmos.Oceanic Technol.,22:1077–1091.Kim S T,Cai W J,Jin F F,et al.2014.ENSO stability in coupled climatemodels and its association with mean state[J].Climate Dyn.,42:3313–3321,doi:10.1007/s00382-013-1833-6.Levitus S,Boyer T P.1994.World Ocean Atlas 1994,Vol.4:Temperature[R].NOAA Atlas NESDIS 4,U.S.Gov.Printing Office.117.Levitus S,Burgett R,Boyer T P.1994.World Ocean Atlas 1994,Vol.3:Salinity[R].NOAA Atlas NESDIS 3,U.S.Gov.Printing Office.99.Li L J,Lin P F,Yu Y Q,et al.2013a.The flexible global ocean-atmosphereland system model,Grid-point version 2:FGOALS-g2[J].Advances inAtmospheric Sciences,30(3):543–560,doi:10.1007/s00376-012-2140-6.Li L J,Wang B,Dong L,et al.2013b.Evaluation of grid-point atmospheric model of IAP LASG version 2(GAMIL2)[J].Advances in AtmosphericSciences,30(3):855–867,doi:10.1007/s00376-013-2157-5.
    Lin P F,Liu H L,Yu Y Q,et al.2013a.Long-term behaviors of two versionsof FGOALS2 in preindustrial control simulations with implications for20th century simulations[J].Advances in Atmospheric Sciences,30(3):577–592,doi:10.1007/s00376-013-2186-0.
    Lin P F,Yu Y Q,Liu H L.2013b.Oceanic climatology in the coupled modelFGOALS-g2:Improvements and biases[J].Advances in AtmosphericSciences,30(3):819–840,doi:10.1007/s00376-012-2137-1.
    Liu H L,Lin P F,Yu Y Q,et al.2012.The baseline evaluation of LASG/IAPclimate system ocean model(LICOM)version 2[J].Acta MeteorologicaSinica,26(3):318–329,doi:10.1007/s13351-012-0305-y.
    Liu J P.2010.Sensitivity of sea ice and ocean simulations to sea ice salinityin a coupled global climate model[J].Science China Earth Sciences,53(6):911–918,doi:10.1007/s11430-010-0051-x.
    Manabe S,Stouffer R J.1993.Century-scale effects of increasedatmospheric CO2 on the ocean-atmosphere system[J].Nature,364:215–218.
    Medhaug I,Furevik T.2011.North Atlantic 20th century multidecadalvariability in coupled climate models:sea surface temperature and oceanoverturning circulation[J].Ocean Science,7(3):389–404,doi:10.5194/os-7-389-2011.
    Oleson K W,Dai Y J,Bonan G B,et al.2004.Technical description of theCommunity Land Model(CLM)[R].NCAR/TN-461+STR.174.
    Riahi K,Rao S,Krey V,et al.2011.RCP 8.5—A scenario of comparativelyhigh greenhouse gas emissions[J].Climatic Change,109:33–57,doi:10.1007/s10584-011-0149-y.
    Schneider B,Latif M,Schmittner A.2007.Evaluation of differentmethods to assess model projections of the future evolution of theAtlantic meridional overturning circulation[J].J.Climate,20:2121–2132.
    Schott F A,Mc Creary J P Jr,Johnson G C.2004.Shallow overturningcirculations of the tropical-subtropical oceans[M]//Earth's Climate:The[12][13]
    Ocean-Atmosphere Interaction.Geophysical Monograph Series 147.Wang C,Xie S P,Carton J A,Eds.Washington,DC:AGU,261–304.
    Swingedouw D,Braconnot P,Delecluse P,et al.2007.Quantifying theAMOC feedbacks during a 2×CO2 stabilization experiment with land-icemelting[J].Climate Dyn.,29:521–534.
    Taylor K E,Stouffer R J,Meehl G A.2012.An overview of CMIP5 and theexperiment design[J].Bull.Amer.Meteor.Soc.,93:485–498.
    Thomson A M,Calvin K V,Smith S J,et al.2011.RCP4.5:A pathway forstabilization of radiative forcing by 2100[J].Climatic Change,109:77–94,doi:10.1007/s10584-011-0151-4.
    van Vuuren D P,Edmonds J,Kainuma M,et al.2011a.The representativeconcentration pathways:An overview[J].Climatic Change,109:5–31,doi:10.1007/s10584-011-0148-z.
    van Vuuren D P,Stehfest E,den Elzen M G J,et al.2011b.RCP2.6:exploring the possibility to keep global mean temperature increase below2°C[J].Climatic Change,109:95–116,doi:10.1007/s10584-011-0152-3.
    Wang B,Liu M M,Yu Y Q,et al.2013.Preliminary evaluations ofFGOALS-g2 for decadal predictions[J].Advances in AtmosphericSciences,30(3):674–683,doi:10.1007/s00376-012-2084-x.
    Weaver A J,Eby M,Kienast M,et al.2007.Response of the Atlanticmeridional overturning circulation to increasing atmospheric CO2:Sensitivity to mean climate state[J].Geophys.Res.Lett.,34:L05708,doi:10.1029/2006GL028756.
    Weaver A J,Sedlá?ek J,Eby M,et al.2012.Stability of the Atlanticmeridional overturning circulation:A model intercomparison[J].Geophys.Res.Lett.,39(20):L20709,doi:10.1029/2012GL053763.
    Zhang Y,Li J.2013.Shortwave cloud radiative forcing on major stratuscloud regions in AMIP-type simulations of CMIP3 and CMIP5 models[J].Advances in Atmospheric Sciences,30:884–907.
    Zhou T J,Yu R C,Liu X Y,et al.2005.Weak response of the Atlanticthermohaline circulation to an increase of atmospheric carbon dioxide inIAP/LASG climate system model[J].Chinese Science Bulletin,50(6):592–598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700