Superhydrophobic PVDF/TiO_2-SiO_2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Superhydrophobic PVDF/TiO_2-SiO_2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant
  • 作者:N.Hamzah ; C.P.Leo ; B.S.Ooi
  • 英文作者:N.Hamzah;C.P.Leo;B.S.Ooi;School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia;
  • 英文关键词:Superhydrophobic;;PVDF;;Nanoparticles;;Roughness;;Membrane distillation
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia;
  • 出版日期:2019-05-31
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:the Ministry of Education Malaysia for providing financial support via TRGS (203/PJKIMIA/67612002/U124)
  • 语种:英文;
  • 页:GFZK201906009
  • 页数:8
  • CN:06
  • ISSN:11-2015/O6
  • 分类号:78-85
摘要
Superhydrophobic poly(vinylidene fluoride)(PVDF) membrane incorporated with nanoparticles was applied in membrane distillation to recover water from phenolic rich solution containing surfactant. The membranes coated on woven support were fabricated using phase inversion with dual bath coagulation and post-modified using silane. The membranes incorporated with TiO_2, SiO_2, or a mixture of TiO_2-SiO_2 nanoparticles achieved the water contact angle higher than 160°. The addition of TiO_2-SiO_2 mixture into PVDF matrix further enhanced the hierarchical roughness of membrane. Hence, PVDF/TiO_2-SiO_2 membrane achieved the highest permeation flux and rejected 99.9% of gallic acid in the feed(100 g/L). PVDF/TiO_2-SiO_2 membrane also maintained a relative flux(J/J0) higher than0.9 after 8 h of operation. Even with the presence of surfactant in phenolic rich solution, PVDF/TiO_2-SiO_2 membrane was able to exhibit relative flux above 0.8. The significant changes on the hydrophobicity and chemical properties of PVDF/TiO_2-SiO_2 membrane due to fouling were not observed after 50 h of static adsorption test.
        Superhydrophobic poly(vinylidene fluoride)(PVDF) membrane incorporated with nanoparticles was applied in membrane distillation to recover water from phenolic rich solution containing surfactant. The membranes coated on woven support were fabricated using phase inversion with dual bath coagulation and post-modified using silane. The membranes incorporated with TiO_2, SiO_2, or a mixture of TiO_2-SiO_2 nanoparticles achieved the water contact angle higher than 160°. The addition of TiO_2-SiO_2 mixture into PVDF matrix further enhanced the hierarchical roughness of membrane. Hence, PVDF/TiO_2-SiO_2 membrane achieved the highest permeation flux and rejected 99.9% of gallic acid in the feed(100 g/L). PVDF/TiO_2-SiO_2 membrane also maintained a relative flux(J/J0) higher than0.9 after 8 h of operation. Even with the presence of surfactant in phenolic rich solution, PVDF/TiO_2-SiO_2 membrane was able to exhibit relative flux above 0.8. The significant changes on the hydrophobicity and chemical properties of PVDF/TiO_2-SiO_2 membrane due to fouling were not observed after 50 h of static adsorption test.
引文
1 Cheynier, V. Phenolic compounds:From plants to foods.Phytochem. Rev. 2012,153, 153-177.
    2 The Cocacola company,Improving Our Water Efficiency.http://www.coca-colacompany.com/stories/setting-a-new-goalfor-water-efficiency, 2017[Accessed 10 December 2017].
    3 Rahim, R.; Raman, A. Cleaner production implementation in a fruit juice production plant. J. Clean Prod. 2015,101, 215-221.
    4 Suarez, L.; Diez, M. A.; Garcia, R.; Riera, F. A. Membrane technology for the recovery of detergent compounds:A review.J. Ind. Eng. Chem. 2012,18, 1859-1873.
    5 Castro-Munoz, R.; Yanez-Fernandez, J.; Fila, V. Phenolic compounds recovered from agro-food by-products using membrane technologies:An overview. Food Chem. 2016, 213, 753-762.
    6 Akdemir, E. O.; Ozer, A. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 2009, 249, 660-666.
    7 Garcia-Castello, E.; Cassano, A.; Criscuoli, A.; Conidi, C.; Drioli, E. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res.2010,44,3883-3892.
    8 Ioannou-Ttofa, L.; Michael-Kordatou, I.; Fattas, S. C.; Eusebio,A.; Ribeiro, B.; Rusan, M.; Amer, A. R. B.; Zuraiqi, S.; Waismand,M.;Linder,C.;Wiesman,Z.;Gilron,J.;Fatta-Kassinos, D. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes,and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 2017,114, 1-13.
    9 Destani,F.; Cassano, A.; Fazio, A.; Vincken,J. P.; Gabriele,B.Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. J. Food Eng. 2013, 117,63-271.
    10 El-Abbassi,A.; Khayet,M.; Kiai,H.; Hafidi,A.; Garcia-Payo,M.C. Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif.Technol. 2013, 327-332, 104.
    11 Kiai, H.; Garcia-Payo, M. C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. 2014,86, 153-161.
    12 Macedonio, F.; Drioli, E. Membrane engineering for green process engineering. Engineering 2017, 3, 290-298.
    13 Chang, Y. R.; Lee, Y. J.; Lee, D. J. Membrane fouling during water or wastewater treatments:Current research updated.Taiwan Inst. Chem. Eng. 2018, 1-9.
    14 Tijing, L. D.; Woo, Y. C.; Choi, J. S.; Lee, S.; Kim, S. H.;Shon, H. K. Fouling and its control in membrane distillation-A review, J. Membr. Sci. 2015, 475, 215-244.
    15 Li, Y.; Zhu, L. Preparation and characterization of novel poly(vinylidene fluoride)membranes using flower-like Bi2WO6 for membrane distillation. J. Taiwan Inst. Chem. Eng. 2017, 80,867-874.
    16 Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415-416, 850-863.
    17 Dong, Z. Q.; Ma, X.; Xu, Z. L.; You, W. T.; Li, F. Superhydrophobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination2014, 347, 175-183.
    18 Meng, S.; Ye, Y.; Mansouri, J.; Chen, V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J. Membr.Sci. 2014, 463, 102-112.
    19 Zhang, W.; Li, Y.; Liu, J.; Li, B.; Wang, S. Fabrication of hierarchical poly(vinylidene fluoride)micro/nano-composite membrane with anti-fouling property for membrane distillation. J.Membr. Sci. 2017, 535, 258-267.
    20 Huang, Y. X.; Wang, Z.; Hou, D.; Lin, S. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 2017,531, 122-128.
    21 Hou, D.; Ding, D. L. C.; Wang, D.; Wang, J. Fabrication and characterization of electrospun superhydrophobic PVDFHFP/SiNPs hybrid membrane for membrane distillation. Sep. Purif.Technol.2017, 189, 82-89.
    22 Yan, K. K.; Jiao, J.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination2018, 437, 26-33.
    23 Hamzah, N.; Leo, C. P. Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles:Separation, fouling and self-cleaning evaluation.. Desalination 2017, 418, 79-88.
    24 Wang, Z.; Lin, S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 2017, 112, 38-47.
    25 Lu, J. K.; Zoo, J.; Chang, J.; Kuan, H. N.; Chung, T. S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environ.Sci.Technol. 2018, 52, 4472-4480.
    26 Chew, N. G. P.; Zhao, S.; Loh, C. H.; Permogorov, N.; Wang,R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J. Membr. Sci. 2017,
    528, 126-134.27 Chen, Y.; Tian, M.; Li, X.; Wang, Y.; An, A. K.; Fang, J.; He,T. Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J. Membr. Sci. 2017, 535,230-238.
    28 Hamzah, N.; Leo, C. P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Sep.Purif. Technol.2016,167, 79-87.
    29 Hamzah, N.; Leo, C. P. Microwave assisted extraction of trigona propolis:The effect of processing parameters. Inter. J.Food Eng. 2015, 11, 861-870.
    30 Guillen,G. R.; Pan, Y.; Li,M.; Hoek,E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation:A review. Ind. Eng. Chem. Res. 2011, 50,3798-3817.
    31 Thomas, R.; Bilad, M. R.; Arafat, H. A. PVDF membranes for membrane distillation:Controlling pore structure, porosity, hydrophobicity, and mechanical strength. In Membrane fabrication. ed. by Hilal, N.; Iamail, A. F.; Wright, C. Boca Raton, FL:CRC Press, 2015, 268.
    32 Bhattacharya, M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers.Materials 2016, 9, 262-296.
    33 Hurst, S. M.; Farshchian, B.; Choi, J.; Kim, J.; Park, S. A universally applicable method for fabricating superhydrophobic polymer surfaces. Colloids Surf., A 2012, 407, 85-90.
    34 Rezaei, M.; Samhaber, W. Wetting behaviour of superhydrophobic membranes coated with nanoparticles in membrane distillation. Chem. Eng. Trans. 2016, 47, 373-378.
    35 Karunakaran, R. G.; Lu,C. H.; Zhang, Z.; Yang,S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles(≤100 nm). Langmuir 2011,27, 4594-4602.
    36 Eykens, L.; Sitter, K. D.; Dotremont,C.; Schepper, W. D.;Pinoy, L.; Bruggen, B. V. D. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and oil. Appl. Sci. 2017, 7, 118-130.
    37 Wang, Z.; Chen, Y.; Sun, X.; Duddu, R.; Lin, S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 2018, 559, 183-195.
    38 Mehrparvar,A.; Rahimpour,A. Surface modification of novel polyether sulfone amide(PESA)ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015, 28,359-368.
    39 Nath, K.; Patel, T. M.; Dave, H. K. Performance characteristics of surfactant treated commercial polyamide membrane in the nanofiltration of model solution of reactive yellow 160. J. Water Process Eng. 2016, 9, 27-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700