接头抗弯刚度非线性及渗水影响下盾构隧道力学行为分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints
  • 作者:徐国文 ; 卢岱岳
  • 英文作者:XU Guo-wen;LU Dai-yue;Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University;
  • 关键词:盾构隧道 ; 非线性 ; 抗弯刚度 ; 接头渗水 ; 内力
  • 英文关键词:shield tunnel;;nonlinearity;;flexural rigidity;;joint leakage;;internal force
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:西南交通大学交通隧道工程教育部重点实验室;
  • 出版日期:2016-01-23 13:59
  • 出版单位:岩土工程学报
  • 年:2016
  • 期:v.38;No.297
  • 基金:国家自然科学基金面上项目(51278424);; 中央高校基本科研业务费专项资金资助项目(2682014CX070)
  • 语种:中文;
  • 页:YTGC201607006
  • 页数:10
  • CN:07
  • ISSN:32-1124/TU
  • 分类号:42-51
摘要
盾构隧道在运营过程中会出现局部渗漏水,对结构的长期安全性有较大影响。目前渗漏水研究中,难以对局部渗漏及盾构隧道的力学特性同时进行准确的模拟。针对该现状,提出一种组合模拟方法,即渗流计算时,管片结构采用均质圆环模型,在局部接头处设置相应的渗流路径;而在力学计算时,关闭渗流场,将管片结构的均质圆环模型替换为考虑接头抗弯刚度非线性的壳–弹簧–接触–地层模型,迭代计算达到平衡。采用该方法对不同渗流量及渗漏位置情况下,隧道周围孔隙水压力分布规律及结构的力学行为进行了对比分析。分析结果表明:渗漏量越大,孔隙水压力降低越明显,结构内力变化越显著,且拱腰附近接头渗水对结构内力的影响程度大于拱顶与拱底附近接头渗水;各接头渗水时,影响区域的划分表现出一致性,即以渗水接头为中心,两侧各36°的区域为严重影响区域;与严重影响区域相连,两侧各48°,60°区域为一般影响区域,剩余区域为微弱影响区域。复合地层情况下,与静水压力工况相比,上半部分渗水导致结构上侧正弯区域增加,下半部分渗水导致结构下侧正弯区域增加,且轴力沿全环分布不均,渗漏侧轴力平均值小于非渗漏侧轴力,对管片结构受力不利。
        Partial leakage during operation of shield tunnel has great impact on the long-term safety of structures. It is difficult to simultaneously simulate partial leakage and mechanical properties of shield tunnel accurately. Hence, a combined simulation method is proposed. For partial leakage simulation, the homogeneous ring model is used and the corresponding seepage path is set at joint position. For mechanical calculation, a shell-spring-contact-ground model considering the nonlinearity of flexural rigidity of segment joints is established to replace the homogeneous ring model. The real stress state of lining is obtained by iterative calculation. The distribution of pore water pressure around tunnel and the mechanical behavior of structures are analyzed under different seepage flows and leakage locations. The results show that the pore water pressure decreases more significantly and the internal force of structures changes more obviously with the increasing seepage. The leaking joint close to tunnel hance has more obvious effect on its internal force. The affected areas of joint leakage exhibit consistency. Taking the leaking joint as the center, the 36-degree areas at its both sides are severely affected, the 48-degree and 60-degree areas are generally affected, and the remaining areas are weakly affected. For the composite strata, compared with these under hydrostatic pressure conditions, the upper and lower leakages lead to the increase of upper and lower positive bending areas, and the distribution of axial force along the whole ring is uneven. The average axial force at the leakage side is less than that at the non-leakage side, which is unfavorable to the safety of segment structures.
引文
[1]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.(ZHANG Feng-xiang,ZHU He-hua,FU De-ming.Shiled tunnlling method[M].Beijing:China Communications Press,2004.(in Chinese))
    [2]张冬梅,黄宏伟,杨俊.衬砌局部渗流对软土隧道地表长期沉降的影响研究[J].岩土工程学报,2005,27(12):1430–1436.(ZHANG Dong-mei,HUANG Hong-wei,YANG Jun.Influence of partial drainage of linings on long-term surface settlement over tunnels in soft soils[J].Chinese Journal of Geotechnical Engineering,2005,27(12):1430–1436.(in Chinese))
    [3]刘印,张冬梅,黄宏伟.盾构隧道局部长期渗漏水对隧道变形及地表沉降的影响分析[J].岩土力学,2013,34(1):291–304.(LIU Yin,ZHANG Dong-mei,HUANG Hong-wei.Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J].Rock and Soil Mechanics,2013,34(1):291–304.(in Chinese)).
    [4]MAIR R J.Tunnelling and geotechnics:new horizons[J].Géotechnique,2008,58(9):695–736.
    [5]SHIN J H.A numerical study of the effect of groundwater movement on long-term tunnel behavior[J].Géotechnique,2002,52(6):391–403.
    [6]潘昌实,译.国际隧协小组研究报告–盾构隧道衬砌设计指南(草案)[J].世界隧道,1997(2):19–29.(PAN Cang-shi.ITA-Working Group Research-Design guidelines of shield tunnel lining(draft)[J].World tunneling,1997(2):19–29.(in Chinese))
    [7]王志良.上海运营地铁盾构法隧道变形特性及其结构性能研究[D].上海:同济大学,2010:15–40.(WANG Zhi-liang.Study on deformation and structure characteristics of operation shield tunnel in Shanghai metro[D].Shanghai:Tongji University,2010:15–40.(in Chinese))
    [8]WONGSAROJ,SOGA K,MAIR R J.Modelling of long-term ground response to tunneling under St James’s Park,London[J].Géotechnique,2007,57(1):75–90.
    [9]黄宏伟,刘印,张冬梅.盾构隧道长期渗水对地表沉降及管片内力的影响[J].中国铁道科学,2012,33(6):36–43.(HUANG Hong-wei,LIU Yin,ZHANG Dong-mei.Influence of long-term seepage of shield tunnel on inner force of segments and ground surface settlement[J].China Railway Science,2012,33(6):36–43.(in Chinese))
    [10]LI X,FLORES-BERRONES R.Time-dependent behavior of partially sealed circular tunnels[J].Computers and Geotechnics,2002,29:433–449.
    [11]陈俊生,莫海鸿.盾构隧道管片接头抗弯刚度的三维数值计算[J].铁道学报,2009,31(4):87–91.(CHEN Jun-sheng,MO Hai-hong.Three dimensional FEM analysis on flexural rigidity of segment joints in shield tunnel[J].Journal of the China Railway Society,2009,31(4):87–91.(in Chinese))
    [12]闫治国,丁文其,沈碧伟,等.输水盾构隧道管片接头力学与变形模型研究[J].岩土工程学报,2011,33(8):1185–1191.(YAN Zhi-guo,DING Wen-qi,SHEN Bi-wei,et al.Structural model for radial joints of water-conveyance shield tunnels[J].Chinese Journal of Geotechnical Engineering,2011,33(8):1185–1191.(in Chinese))
    [13]朱伟,译.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2006:15–36.(ZU Wei,tran.Specification for tunnel(shield)and commentary[M].Beijing:China Building Industry Press,2006:15–36.(in Chinese))
    [14]Itasca Consulting Group.Inc FLAC3D User’s Manual,Version3.0[R].Itasca Consulting Group,2004.
    [15]何川,张建刚,苏宗贤.大断面水下盾构隧道结构力学特性研究[M].北京:科学出版社,2010:83–89.(HE Chuan,ZHANG Jian-gang,SU Zong-xian.Study on mechanical properties of underwater shield tunnel with large section[M].Beijing:Science Press,2010:83–89.(in Chinese))
    [16]封坤.大型水下盾构隧道管片衬砌结构力学性能研究[D].成都:西南交通大学,2012:32–65.(FENG Kun.Research on mechanical behavior of segmental lining structure of underwater shield tunnel with large cross-section[D].Chengdu:Southwest Jiaotong University,2012:32–65.(in Chinese))
    [17]CAVALARO S.H.P,AGUADO A.Packer behavior under simple and coupled stresses[J].Tunnelling and Underground Space Technology,2012,28:159–173.
    [18]Ngoc-Anh Do,Daniel Dias,Pierpaolo Oreste,et al.2D numerical investigation of segmental tunnel lining behavior[J].Tunnelling and Underground Space Technology,2013,37:115–127.
    [19]张建刚.大断面水下盾构隧道的相似模型试验及结构内力分析[D].成都:西南交通大学,2008:145–150.(ZHANG Jian-gang The model test and structural internal force analysis of large section underwater tunnel[D].Chengdu:Southwest Jiaotong University,2008:145–150.(in Chinese))
    [20]竺维彬,鞠世健.复合地层中的盾构施工技术[M].北京:中国科学技术出版社,2006:1–20.(ZHU Wei-bing,JU Shi-jian.Shield construction technology in complex stratum[M].Beijing:Chinese Science and Technology Press,2006:1–20.(in Chinese))
    [21]周济民.水下盾构法隧道双层衬砌结构力学特性[D].成都:西南交通大学,2012:104–112.(ZHOU Ji-min.Research on mechanical behavior of double-layer lining structure for underwater shield tunnel[D].Chengdu:Southwest Jiaotong University,2012:104–112.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700