多年冻土对青藏高原草地生态承载力的贡献研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contribution of permafrost to grassland ecological carrying capacity in the Qinghai-Tibetan Plateau
  • 作者:方一平 ; 朱付彪 ; 宜树华 ; 邱孝枰 ; 丁永建
  • 英文作者:FANG Yi-Ping;ZHU Fu-Biao;YI Shu-Hua;QIU Xiao-Ping;DING Yong-Jian;Institute of Mountain Hazards & Environment, Chinese Academy of Sciences;College of Resource and Environment, University of Chinese Academy of Sciences;University of Chinese Academy of Sciences;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;
  • 关键词:草地生态承载力 ; 多年冻土 ; 多年冻土活动层厚度 ; 结构动力学 ; 青藏高原
  • 英文关键词:Ecological carrying capacity;;Permafrost;;Thickness of permafrost active layer;;Structural dynamics;;Qinghai-Tibetan Plateau(QTP)
  • 中文刊名:QHBH
  • 英文刊名:Climate Change Research
  • 机构:中国科学院水利部成都山地灾害与环境研究所;中国科学院大学资源与环境学院;中国科学院大学;中国科学院西北生态环境资源研究院;中国科学院寒区旱区环境与工程研究所冰冻圈科学重点实验室;中国科学院寒区旱区环境与工程研究所内陆河流域生态水文重点实验室;
  • 出版日期:2019-02-26 13:16
  • 出版单位:气候变化研究进展
  • 年:2019
  • 期:v.15;No.84
  • 基金:国家自然科学基金项目(41571523,41661144038);; 国家重点基础研究发展计划项目(973)(2013CBA01808);; 国家科技支撑课题(2014BAC05B01)
  • 语种:中文;
  • 页:QHBH201902005
  • 页数:8
  • CN:02
  • ISSN:11-5368/P
  • 分类号:48-55
摘要
草地生态系统是一个复杂的社会、经济、生态系统,多年冻土作为高寒草地生态系统结构和功能维系的重要因素,是客观刻画高寒草地生态承载力不容忽视的重要方面。文中采用结构动力学方法,从草地质量、草地干预、草地潜力、草地压力4个维度建立高寒草地生态承载力结构动力学模型,分析青藏高原多年冻土区草地生态承载力的变化以及主要结构要素,量化多年冻土变化对青藏高原高寒草地生态承载力的贡献率,结果表明:(1)多年冻土区草地生态承载力呈增加趋势,尤其是1998年以后上升显著,这主要归因于草地生长季节降水增加、气温升高、净初级生产力增幅驱动以及生态保护工程建设的共同作用。(2)多年冻土活动层厚度变化与草地生态承载力呈负相关,多年冻土活动层厚度对草地生态承载力的贡献率约为10%,即多年冻土活动层厚度每增加1个单位,将导致草地生态承载力下降0.1个单位。由于青藏高原空间差异显著,加之气候变化的不确定性,这一贡献水平只是一个粗略的参照值。
        Grassland ecosystem is a complex social-ecological system. Permafrost, as an important factor to maintain the structure and function of alpine grassland ecosystem, is an important aspect to describe the ecological carrying capacity of alpine grassland objectively. The impact of permafrost on the ecological carrying capacity of alpine grassland is poorly understood. In this study, using the structural dynamics method, we established a numerical model to estimate the ecological carrying capacity of alpine grassland. Variation of the grassland ecological carrying capacity of the permafrost regions of the Qinghai-Tibetan Plateau(QTP) was analyzed,while the contribution of the permafrost active layer to the ecological carrying capacity of alpine grassland was also quantified. Results show that the ecological carrying capacity of alpine grassland in permafrost regions displayed an increasing trend, especially after 1998, due to increases of precipitation, air temperature, net primary productivity during growing season of grassland, and the establishment of ecological protection projects. The thickness variation of permafrost active layer is negatively correlated with ecological carrying capacity of alpine grassland. The mean contribution of permafrost active thickness to the ecological carrying capacity of alpine grassland was 10% in the QTP during 1980-2013. That is, for every 1 unit increase in the thickness of the permafrost active layer, the ecological carrying capacity of the alpine grassland will be reduced by 0.1 units.Owing to the significant spatial differences over the QTP and the uncertainty of climate change, this result is only a rough estimate of role of permafrost in the ecological carrying capacity.
引文
[1]David G S, Carvalho E D, Lemos D, et al. Ecological carrying capacity forintensivetilapia(Oreochromisniloticus)cageaquacultureina large hydro electrical reservoir in southeastern Brazil[J]. Aquacultural Engineering, 2015, 66:30-40
    [2]Costanza R. Economic growth, carrying capacity, and the environment[J]. Ecological Economics, 1995, 15(2):89-90
    [3]Daily G C. Nature’s services:societal dependence on natural ecosystems[M]. Washington DC:Island Press, 1997
    [4]Graymore M L M, Sipe N G, Rickson R E. Sustaining human carrying capacity:a tool for regional sustainability assessment[J]. Ecological Economics, 2010(69):459-468
    [5]Arrow K, Bolin B, Costanza R, et al. Economic growth, carrying capacity,and the environment[J]. Ecological Economics, 1995, 15(2):91-95
    [6]Seidl I, Tisdell C A. Carrying capacity reconsidered:from Malthus’s populationtheorytoculturalcarryingcapacity[J].Ecological Economics, 1999, 31:395-408
    [7]PratoT.Fuzzy adaptive management of social and ecological carrying capacities for protected areas[J]. Journal of Environmental Management, 2009, 90:2551-2557
    [8]Rajaram T, Das A. Screening for EIA in India:enhancing effectiveness throughecologicalcarryingcapacityapproach[J].Journalof Environmental Management, 2011(92):140-148
    [9]Odum E P. Basic ecology[M]. Saunders, Philadelphia, 1983
    [10]Smaal A C, Prins T C, Dankers N, et al. Minimum requirements for modelling bivalve carrying[J]. Aquatic Ecology, 1998, 31:423-428
    [11]Hudak A T.Rangel and mismanagement in South Africa:failureto apply ecological knowledge[J]. Human Ecology, 1999, 27(1):55-78
    [12]Bailey J A. Principles of wildlife management[M]. New York:John Wiley&Sons, 1984
    [13]杨志峰,隋欣.基于生态系统健康的生态承载力评价[J].环境科学学报, 2005, 25(5):586-594
    [14]杨贤智.环境管理学[M].北京:高等教育出版社, 1990:150-155
    [15]张传国,方创琳,全华.干旱区绿洲承载力研究的全新审视与展望[J].资源科学, 2002, 24(2):42-47
    [16]程国栋.承载力概念的演变及西北水资源承载力的应用框架[J].冰川冻土, 2002, 24(4):361-367
    [17]王中根,夏军.区域生态环境承载力的量化方法研究[J].长江职工大学学报, 1999, 16(4):9-12
    [18]高吉喜.可持续发展理论探讨:生态承载力理论、方法与应用[M].北京:中国环境科学出版社, 2001:12-28
    [19]王家骥,姚小红,李京荣.黑河流域生态承载力估测[J].环境科学研究, 2000, 13(2):44-48
    [20] Cheng J Y, Zhou K, Chen D, et al. Evaluation and analysis of provincial differences in resources and environment carrying capacity in China[J].Chinese Geographical Science, 2016, 26(4):539-549
    [21] Fang C L, Liu X L. Comprehensive measurement for carrying capacity ofresourcesandenvironmentofcityclustersincentralChina[J].Chinese Geographical Science, 2010, 20(3):281-288
    [22] Peng J, Du Y Y, Liu Y X, et al. How to assess urban development potential in mountain areas? An approach of ecological carrying capacity in the view of coupled human and natural[J]. Ecological Indicators, 2016, 60:1017-1030
    [23]钟茂初.如何表征区域生态承载力与生态环境质量?兼论以胡焕庸线生态承载力涵义重新划分东中西部[J].中国地质大学学报:社会科学版, 2016, 16(1):1-9
    [24] Ding L, Chen K L, Cheng S G, et al. Water ecological carrying capacity of urban lakes in the context of rapid urbanization:a case study of East Lake in Wuhan[J]. Physics and Chemistry of the Earth, 2015(89-90):104-113
    [25]焦雯,闵庆文,李文华,等.基于ESEF的水生态承载力:理论、模型与应用[J].应用生态学报, 2015, 26(4):1041-1048
    [26] Zhang Z, Lu W X, Zhao Y, et al. Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area ofJilinprovinceinChinabasedonsystemdynamicsandanalytic hierarchy process[J]. Ecological Modelling, 2014(275):9-21
    [27] Wang S, Xu L, Yang F L, et al. Assessment of water ecological carrying capacity under the two policiesin Tielingcity on the basis of the integrated system dynamics model[J]. Science of the Total Environment,2014(472):1070-1081
    [28] Scoones I.Economic and ecological carrying capacity applications topastoral systems in Zimbabwe[M]//Barbier EB.Economicsand ecology:new frontiers and sustainable development. London:Chapman&Hall, 1993:96-117
    [29] Fang Y P, Qin D H, Ding Y J, et al. The impacts of permafrost change on NPP and implications:a case of the source regions of Yangtze and Yellow Rivers[J]. Journal of Mountain Science, 2011, 8(3):437-447
    [30]施开放,刁承泰,孙秀锋,等.基于耕地生态足迹的重庆市耕地生态承载力供需平衡研究[J].生态学报, 2013, 33(6):1872-1880
    [31] Wei C, Dai X Y, Ye S F, et al. Prediction analysis model of integrated carrying capacity using set pair analysis[J]. Ocean&Coastal Management,2016, 120:39-48
    [32] Cuadra M, Bjorklund J. Assessment of economic and ecological carrying capacity of agricultural crops in Nicaragua[J]. Ecological Indicators,2007, 7:133-149
    [33] Liu D, Feng Z M, Yang Y Z, et al. Spatial patterns of ecological carrying capacity supply-demand balance in China at county level[J]. Journal of Geography Science, 2011, 21(5):833-844
    [34] Yue D X. RS&GIS-based spatial analysis on ecological carrying capacity pattern of Northwest China:does supply meet demand?[J]. Quaternary International, 2012:279-280, 551. DOI:10.1016/j.quaint.2012.08.1945
    [35] Jiang WM,GibbsM T.Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model[J]. Aquaculture,2005, 244:171-185
    [36] Byron C,Bengtso D,Costa-Pierce B, etal.Integrating science into management:ecological carrying capacity of bivalveshell fish aquaculture[J]. Marine Policy, 2011, 35:363-370
    [37] Byron C, Link J, Costa-Pierce B, et al. Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling:Narragansett Bay, Rhode Island[J]. Ecological Modelling, 2011, 222:1743-1755
    [38] Mckindsey C W,Thetmeyer H,Landry T,et al.Review of recent carrying capacity models for bivalve culture and recommendations for research and management[J]. Aquaculture, 2006, 26(2):451-462
    [39] Thapa G B, Paudel G S. Evaluation of the livestock carrying capacity of land resources in the hills of Nepal based on total digestive nutrient analysis[J]. Agriculture, Ecosystems and Environment, 2000, 78:223-235
    [40] Yu L, Zhou L, Liu W, et al. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China[J]. Pedosphere, 2010, 20(3):342-351
    [41] Zhang J P, Zhang L B, Liu W L, et al. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China[J]. Journal of Geography Science, 2014, 24(2):303-312
    [42]刘东霞,张兵兵,卢欣石.草地生态承载力研究进展及展望[J].中国草地学报, 2007, 29(1):91-96
    [43]孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设[J].地理学报, 2012, 67(1):3-12
    [44]焦世晖,王凌越,刘耕年.全球变暖背景下青藏高原多年冻土分布变化预测[J].北京大学学报:自然科学版, 2016, 52(2):249-256
    [45]张镱锂,祁威,周才平,等.青藏高原高寒草地净初级生产力(NPP)时空分异[J].地理学报, 2013, 68(9):1197-1211
    [46]邹经湘,于开平.结构动力学(第二版)[M].哈尔滨:哈尔滨工业大学出版社, 2009
    [47] Fang Y P,Zhu F B,Qiu X P,et al.Effects of natural disasters on livelihood resilience of rural residents in Sichuan[J].Habitat International, 2018, 76:19-28
    [48] Scazzieri R.Structural dynamics and evolutionary change[J].Structural Changeand Economic Dynamics,2018.DOI:10.1016/j.strueco.2018.03.007
    [49] Kraus MK,Park J W. The structural dynamics of socialclass[J].Current Opinion in Psychology, 2017, 18:55-60
    [50] Arena R, Porta P L. Introduction:structural dynamics and contemporary growththeory[M]//ArenaR,PortaPL.Structuraldynamicsand economic growth. Cambridge:Cambridge University Press, 2012:1-33
    [51] Yi S, Wang X, Qin Y, et al. Responses of alpine grassland on Qinghai Tibetan Plateau to climate warming and permafrost degradation:a modeling perspective[J]. Environmental Research Letters, 2014, 9(7):074014
    [52]方水良.现代控制理论及其MATLAB实践[M].杭州:浙江大学出版社, 2005
    [53] Jiang C,Zhang LB.Ecosystem change assessment in theThree River headwater region, China:patterns, causes, and implications[J].Ecological Engineering, 2016, 93:24-36
    [54]Jiang C, Li D Q, Wang D W, et al. Quantification and assessment of changesinecosystemserviceinthe Three-Riverheadwatersregion,Chinaasaresultofclimatevariabilityandlandcoverchange[J].Ecological Indicators, 2016, 66:199-211
    [55]陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报, 2015, 60(32):3025-3035
    [56] Che M L, Chen B Z, Innes J L, et al. Spatial and temporal variations intheenddate of the vegetation growing seas ont hrough out the Qinghai-Tibetan Plateau from 1982 to 2011[J]. Agricultural and Forest Meteorology, 2014, 189-190:81-90
    [57]黄麟,曹巍,徐新良,等.西藏生态安全屏障保护与建设工程的宏观生态效应[J].自然资源学报, 2018, 33(3):398-411
    [58] Ye X, Liu G H, Li Z S, et al. Evaluation of ecological effectiveness of protected areas in Northwest China[J]. Chinese Geographical Science,2017, 27(2):259-272
    (1) http://data.cma.cn。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700