3D堆叠封装硅通孔结构的电-热-结构耦合分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electric-thermo-structural coupling analysis of through silicon via in 3D stacked packaging structure
  • 作者:于思佳 ; 陈善圣 ; 苏德淇 ; 沈志鹏 ; 张元祥
  • 英文作者:YU Sijia;CHEN Shansheng;SU Deqi;SHEN Zhipeng;ZHANG Yuanxiang;College of Mechanical,Quzhou University;
  • 关键词:硅通孔 ; 电-热-结构耦合分析 ; 有限元法 ; 电流密度 ; 热应力
  • 英文关键词:through silicon via;;electric-thermo-structural coupling analysis;;finite element method;;current density;;thermal stress
  • 中文刊名:DZAL
  • 英文刊名:Electronic Components and Materials
  • 机构:衢州学院机械工程学院;
  • 出版日期:2019-04-19 13:22
  • 出版单位:电子元件与材料
  • 年:2019
  • 期:v.38;No.326
  • 基金:国家自然科学基金(51605252,51875523)
  • 语种:中文;
  • 页:DZAL201904007
  • 页数:6
  • CN:04
  • ISSN:51-1241/TN
  • 分类号:46-51
摘要
硅通孔(TSV)技术作为三维封装的关键技术,其可靠性问题受到广泛的关注。基于ANSYS平台,通过有限元方法,对3D堆叠封装的TSV模型进行了电-热-结构耦合分析,并进一步研究了不同的通孔直径、通孔高度以及介质隔离层SiO_2厚度对TSV通孔的电流密度、温度场及热应力分布的影响。结果表明:在TSV/微凸点界面的拐角处存在较大的电流密度和等效应力,容易引起TSV结构的失效;增大通孔直径、减小通孔长度可以提高TSV结构的电-热-机械可靠性;随着SiO_2层厚度的增加,通孔的最大电流密度增大而最大等效应力减小,需要综合考虑合理选择SiO_2层厚度。
        As the key technology of three-dimensional packaging,the reliability of the through silicon via(TSV) technology has attracted wide attention.Based on ANSYS platform,the electric-thermo-structural coupling analysis of the TSV model of 3 D stacked packaging was carried out by finite element method.The effects of different TSV diameter,TSV height and the thickness of SiO_2 on the current density,the temperature and thermal stress distribution of the TSV were then studied.The results show that large current density and von-Mises stress exist at the corner of the TSV/micro bump interface,which may lead to the failure of TSV structure.Larger diameter and shorter length can improve the electric-thermo-structural reliability of TSV structures.As SiO_2 layer thickness increases,the maximum current density increases,while the maximum von-Mises stress decreases.As a result,it is necessary to choose the thickness of SiO_2 layer carefully.
引文
[1]Lancaster A,Keswani M.Integrated circuit packaging review with an emphasis on 3D packaging [J].Integration,2018,60:204-212.
    [2]董刚,姚奕彤,刘荡,等.硅通孔热应力导致器件迁移率变化分析 [J].西安电子科技大学学报,2017,44(6):83-87.
    [3]Kinoshita T,Kawakami T,Hori T,et al.Thermal stresses of through silicon vias and Si chips in three dimensional system in package [J].Journal of Electronic Packaging,2012,134(2):20903.
    [4]薛彤,张国华,杨轶博.多种结构硅通孔热应力仿真分析 [J].微电子学,2015,45(6):820-824.
    [5]黄春跃,梁颖,熊国际,等.基于热-结构耦合的3D-TSV互连结构的应力应变分析 [J].电子元件与材料,2014,33(7):85-90.
    [6]袁琰红,高立明,吴昊,等.硅通孔尺寸与材料对热应力的影响 [J].半导体光电,2013,34(2):255-258.
    [7]赵健,崔玉强,焦科名.基于复合介质层材料的硅通孔热结构耦合分析 [J].微电子学,2017,47(6):837-841.
    [8]Song M,Mundboth K R,Szpunar J A,et al.Characterization of local strain/stress in copper through-silicon via structures using synchrotron X-ray microdiffraction,electron backscattered diffraction and nonlinear thermomechanical model [J].Journal of Micromechanics and Microengineering,2015,25(8):0850028.
    [9]Kosemura D,De Wolf I.Three-dimensional micro-Raman spectroscopy mapping of stress induced in Si by Cu-filled through-Si vias [J].Applied Physics Letters,2015,106:19190119.
    [10]Bahareh B,Suresh R,Liu H L,et al.Outstanding and innovative reliability study of 3D TSV interposer and fine pitch solder micro-bumps [C]//2012 IEEE 62nd Electronic Components and Technology Conference.NY,USA:IEEE,2012.
    [11]孙汉,王玮,陈兢,等.硅通孔(TSV)的工艺引入热应力及其释放结构设计 [J].应用数学和力学,2014,35(3):295-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700