亚波长纳米金属光栅偏振聚光器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of focusing sub nanometer metal grating polarizer
  • 作者:关乐 ; 王忠旭 ; 李世奇 ; 刘胜 ; 崔岩 ; 褚金奎
  • 英文作者:GUAN Le;WANG Zhongxu;LI Shiqi;LIU Sheng;CUI Yan;CHU Jinkui;Key Laboratory for Precision & Non-traditional Machining of Ministry of Education,Dalian University of Technology;Key Laboratory for Micro/Nano Technology and System of Liaoning Province;
  • 关键词:聚焦 ; 偏振视觉 ; 偏振器 ; 纳米金属光栅 ; 时域有限差分方法
  • 英文关键词:focusing;;polarization vision;;polarizer;;nanoscale metal grating;;finite-difference-time-domain(FDTD) method
  • 中文刊名:CGQJ
  • 英文刊名:Transducer and Microsystem Technologies
  • 机构:大连理工大学精密与特种加工教育部重点实验室;辽宁省微纳米技术及系统重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:传感器与微系统
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金资助项目(51675076; 51505062);国家自然科学基金创新研究群体项目(51621064);; 中央高校基本科研业务费资助项目(DUT17GF109,DUT16TD20)
  • 语种:中文;
  • 页:CGQJ201906020
  • 页数:5
  • CN:06
  • ISSN:23-1537/TN
  • 分类号:76-80
摘要
为有效利用白天和夜晚的全天候偏振光信息,进一步拓展偏振光导航系统在微光环境下的应用,基于昆虫复眼的偏振视觉仿生原理,设计了一种亚波长光栅式平面金属聚光透镜结构,可以在保证偏振信息采集的同时实现微光环境中光的聚焦增强。基于表面等离子体激元光学理论,利用具有特定变化规律的变间距w和变高度d的纳米金属光栅阵列结构,设计了一种新型亚波长纳米金属光栅偏振聚光器。采用时域有限差分(FDTD)方法,对聚光器的结构参数进行了数值模拟,通过对聚光器光场分布的优化分析,给出了各参数对焦点位置和聚焦效果的影响规律,同时求解了TM光的透射率。其中最优结构的焦点位置位于偏振聚光器光出口2 798 nm,光强值提高到了16倍。在450 nm的偏振光导航器敏感波段其透射率约为63%。提出的新型金属光栅偏振聚光器结构为未来微纳偏振导航器件的光学设计与集成制造提供了有效的参考。
        A sub-wavelength grating planar metal lens which can enable both polarization information acquisitioning and light's focusing is designed based on the principle of insect polarization vision in order to use the all-weather polarized light information in the daytime and night efficiently,expanding the application of polarized light navigation system in low-light environment. Based on the theory of surface plasmon polaritons,design a new subwavelength nanoscale grating polarizing concentrator by the structure of variable spacing w and variable height d nano metal grating array structure,use the finite-difference time-domain( FDTD) method to simulate on structure parameters of concentrator by optimized analysis on light field distribution,influence rule of each parameter on focus position and focusing effect is given. Transmittance of TM light is solved. The focus of the optimal structure is located in the light outlet 2 798 nm of the polarizing concentrator. The light intensity is increased to 16 times. Transmittance of the polarizer is about 63 % in the 450 nm which is sensitive band of the polarized light navigator. This structure provides an effective reference for optical design of micro nano polarization navigation devices in the future and integrated fabrication.
引文
[1]褚金奎,张然,王志文,等.仿生偏振光导航传感器研究进展[J].科学通报,2016,23:2568-2577.
    [2]崔岩,曹楠楠,褚金奎,等.天空偏振光侧量系统的设计[J].光学精密工程,2009,17(6):1431-1435.
    [3]崔文煜,张运杰,易维宁,等.多角度偏振辐射计系统设计与实现[J].光学学报,2012,32(8):250-255.
    [4]褚金奎,张慧霞,王寅龙,等.多方向偏振光实时定位样机的设计与搭建[J].光学精密工程,2017,25(2):312-318.
    [5]刘琦,褚金奎,王兢,等.水云条件下大气偏振特性研究及其模拟分析[J].光学学报,2014,34(3):19-23.
    [6]崔岩,陈小龙,褚金奎,等.晴朗天气下满月偏振模式的研究[J].光学学报,2014,34(10):139-147.
    [7] WEHNER R. Desert ant navigation:How miniature brains solve complex tasks[J]. Journal of Comparative Physiology A,2003,189(8):579-588.
    [8] LABHART T,MEYER E P. Detectors for polarized skylight in insects:A survey of ommatidial specializations in the dorsal rim area of the compound eye[J]. Microsc Res Tech,1999,47:368-379.
    [9] LIU Z,ZHANG R,WANG Z W,et al. Integrated polarizationdependent sensor for autonomous navigation[J]. J Micro/Nanolith MEMS/MOEMS,2015,14(1):231-237.
    [10]冷雪,那杰.昆虫复眼的结构和功能[J].沈阳师范大学学报:自然科学版,2009(2):241-245.
    [11]徐琰,颜树华,周春雷,等.昆虫复眼的仿生研究进展[J].光学技术,2006(S1):10-12.
    [12] DONG L,AGARWAL A K,BEEB D J,et al. Adaptive liquid microlenses activated by stimuliresponsive hydrogels[J]. Nature,2006,442:551-554.
    [13] HU J,LIU C H,REN X,et al. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano,2017,10(11):10275-10282.
    [14] HU J,LIU C H,REN X,et al. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano,2016,10:10275-10282.
    [15] WANG S,LAI J,WU T,et al. Wide-band achromatic fat focusing lens based on all-dielectric subwavelength metasurface[J]. Opt Express,2017,25:7121-7130.
    [16] GAO H,HYUN J K,LEEM H,et a1. Broad band plasmonic micro-lenses based on patches of nano-holes[J]. Nano Lett,2010,10(10):4111-4116.
    [17] YU Y,CHASSAING E D,SCHERER T,et a1. The focusing and talbot effect of periodic arrays of metallic nano aperturesin highindexmedium[J]. Plasmonics,2013,8(2):723-732.
    [18] SHIH,WANG C,DU C,et a1. Beam manipulating by metal licnano-slits with variant widths[J]. Opt Express,2005,13(18):6815-6820.
    [19] VERSLEGER S L,CATRYSSEP B,YU Z,et a1. Planar lenses based on nanoscales lit arrays inametallic film[J]. Nano Lett,2009,9(1):235-238.
    [20] LIN L,GOHX M,MCGUINNERR L P,et a1. Plasmonic lenses formed by two-dimensional nano metric cross-shaped-aperture arays for Fresnel-region focusing[J]. Nano Lett,2010,10(5):1936-1940.
    [21] YU Y,ZAPPE H. Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design[J]. Opt Express,2011,19(10):9434-9444.
    [22] YU Y,ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Opt Lea,2012,37(9):1592-1594.
    [23] ZHANG Y,FU Y,LIU Y,et a1. Experimental study of metallic elliptical nano pinhole structure-based plasmonic lenses[J]. Plasmonics,2011,6(2):219-226.
    [24] FU Y,LIU Y,ZHOU X,et a1. Experimental investigation of super focusing of plasmonic lens with chirped circular nanoslits[J]. Opt Express,2010,18(4):3438-3443.
    [25] LIU Y,FU Y,ZHOU X,et a1. Experimental study of indirect phase tuning-based plasmonic structures for finely focusing[J].Plasmonics,2011,6(2):227-233.
    [26] ZHU Y,YUAN W,YU Y,et a1. Metallicplanar lens for medbycoupled width-variable nanoslits for superfocusing[J]. Opt Express,2015,23(15):20124-20131.
    [27]史林兴,王莉,李华,等.表面等离子体激元透镜设计及其数值计算[J].光学精密工程,2010,18(3):831-835.
    [28]范宁生,张旭东,范之国,等.仿生POL神经元的偏振光导航传感器研究[J].传感器与微系统,2011,30(9):53-56.
    [29]王璐,王寅龙,王志文,等.基于集成光电探测器的仿生偏振光导航传感器[J].传感器与微系统,2016,35(1):91-94.
    [30] SRITURAVANICH W,FANG N,SUN C,et a1. Plasmonic nanolithography[J]. Nano Lett,2004,4(6):1085-1088.
    [31] UENO K,TAKABATAK E S,NISHIJIMA Y,et a1. Nanogapassisted surface plasmon nano lithography[J]. Phys Chem Lett,2010,1(3):657-662.
    [32] WANG L,UPPULURIS M,JINEEE X,et a1. Nano lithography using high transmission nanoscale bowtie apertures[J]. Nano Lett,2006,6(3):361-364.
    [33] SUNDARAMURTH Y A,SCHUCK P J,CONLEY N R,et a1.Toward nanometer-scale optical photolithography:utilizing the near-field of bowtie optical nanoantennas[J]. Nano Lett,2006,6(3):355-360.
    [34] SHI H F,WANG C T,DU C L,et al. Beam manipulating by metallic nano-slits with variant widths[J]. Optics Express,2005,13:6815-6820.
    [35] CHEN W J. Design of bionic polarization navigation sensor[D].Dalian:Dalian University of Technology,2008.
    [36] LAMBRINOS D,MLLER R,LABHART T,et al. A mobile robot employing insect strategies for navigation[J]. Robotics&Autonomous Systems,2000,30(1):39-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700