用户名: 密码: 验证码:
气压对SF_6正极性直流局部放电分解特性的影响及作用机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Pressure on SF_6 Decomposition Characteristic Under Positive DC Partial Discharge and Its Mechanism
  • 作者:朱宁 ; 曹政钦 ; 赵荣普 ; 苗玉龙 ; 董伟 ; 陈晓琳
  • 英文作者:ZHU Ning;CAO Zhengqin;ZHAO Rongpu;MIAO Yulong;DONG Wei;CHEN Xiaolin;Kunming Power Supply Bureau of Yunnan Electric Power Grid Co., Ltd.;State Key Laboratory of Power Transmission Equipment & System Security and New Technology,Chongqing University;Electric Power Research Institute of State Grid Chongqing Electric Power Company;Electric Power Research Institute of State Grid Hainan Electric Power Company;
  • 关键词:不同气压 ; 正极性直流 ; 分解组分 ; 局部放电
  • 英文关键词:different pressure;;positive direct current;;decomposition components;;partial discharge
  • 中文刊名:JYCT
  • 英文刊名:Insulating Materials
  • 机构:云南电网有限责任公司昆明供电局;重庆大学输配电装备及系统安全与新技术国家重点实验室;国网重庆市电力公司电力科学研究院;海南电网有限责任公司电力科学研究院;
  • 出版日期:2019-07-19 16:49
  • 出版单位:绝缘材料
  • 年:2019
  • 期:v.52
  • 语种:中文;
  • 页:JYCT201907009
  • 页数:6
  • CN:07
  • ISSN:45-1287/TM
  • 分类号:56-61
摘要
为了研究不同GIS内部气压对SF_6正极性直流PD分解组分的影响,本文对SF_6正极性直流局部放电分解组分的影响机制进行了分析,搭建了正极性直流PD实验平台,研究不同气压下SF_6正极性直流PD分解组分的含量及生成速率。结果表明:在不同的气压条件下,4种特征分解组分(CF_4、SO_2F_2、SOF_2和SO_2)的生成量和生成速率存在明显的差异,其中SO_2F_2和SOF_2的含量最大,SO_2含量较少,CF_4含量最少。在保持气室体积和外部温度不变的情况下,SF_6初级分解产物SF_5、SF_4、SF_2等的生成量与气压大小成反比,使得在5组实验气压下,气压值越大,4种特征分解组分的生成量越少。
        In order to study the influence of different pressure on the SF_6 decomposition components under positive DC partial discharge(PD) in GIS, the influence mechanism of SF_6 decomposition components under positive DC partial discharge was analyzed, and a test platform was set to research the content of SF_6 decomposition components and their generating rate under positive DC partial discharge at different pressure. The results show that under different pressure, there are obvious difference among the generating amount and generating rate of the characteristic components CF_4, SO_2 F_2, SOF_2, and SO_2. The content of SO_2 F_2 and SOF_2 is the highest, the content of SO_2 is followed by, and the content of CF_4 is the lowest. Under the same chamber volume and external temperature, the generating amount of the primary decomposition products of SF_6, including SF_5, SF_4, SF_2, is inverse proportion to the pressure, make the content of CF_4, SO_2 F_2, SOF_2, and SO_2 decrease with the increase of pressure.
引文
[1]林涛,韩冬,钟海峰,等.工频交流电晕放电下SF6气体分解物形成的影响因素[J].电工技术学报,2014,29(2):219-225.
    [2]范庆涛.六氟化硫气体过热性分解实验系统研制及实验方法研究[D].重庆:重庆大学,2013.
    [3]龚尚昆,陈绍艺,周舟,等.局部放电中的SF6分解产物及其影响因素研究[J].高压电器,2011,47(8):48-56.
    [4]颜湘莲,王承玉,季严松,等.气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J].电工技术学报,2015,30(22):231-238.
    [5]杨保初,刘晓波,戴玉松,等.高电压技术[M].重庆:重庆大学出版社,2012:26-27.
    [6]唐炬,任晓龙,谭志红,等.针板缺陷模型下局部放电量与SF6分解组分的关联特性[J].高电压技术,2012,38(3):527-534.
    [7] DING W, HAYASHI R, OCHI K, et al. Analysis of PD-generated SF6decomposition gases adsorbed on carbon nanotubes[J]. IEEE Transactions Dielectrics and Electrical Insulation,2006,12(6):1200-1207.
    [8] HEISE M H, KURTE R, FISCHER P, et al. Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6insulated equipment[J]. Fresenius Journal Analytical Chemistry,1997,358(7-8):793-799.
    [9] SAUERS I, ELLIS W H, CHRISTOPHOROU G L. Neutral decomposition products in spark breakdown of SF6[J]. IEEE Transactions on Electrical Insulation,1986,21(2):111-120.
    [10] OMINAGA S, KUWAHARA H, HIROOKA K, et al. SF6gas analysis technique and its application for evaluation of internal conditions in SF6gas equipment[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(9):4196-4206.
    [11]汲胜昌,钟理鹏,刘凯,等. SF6放电分解组分分析及其应用的研究现状与发展[J].中国电机工程学报,2015,35(9):2318-2332.
    [12]张晓星,李新,刘恒,等.基于悬臂梁增强型光声光谱的SF6特征分解组分H2S定量检测[J].中国电机工程学报,2016,31(15):187-196.
    [13]唐炬,杨东,曾福平,等.基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J].中国电机工程学报,2016,31(20):41-54.
    [14] BELMADANI J, CASANOVAS J. SF6decomposition under power arcs-physical aspects[J]. IEEE Transactions Electrical Insulation,1991,26(6):1163-1175.
    [15]唐炬,胡瑶,姚强,等.不同气压下SF6的局部放电分解特性[J].高电压技术,2014,40(8):2257-2263.
    [16]张文亮,周孝信,郭剑波,等.±1000kV特高压直流在我国电网应用的可行性研究[J].中国电机工程学报,2007,27(28):1-5.
    [17]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,29(24):1-4.
    [18]范建斌,李鹏,李金忠,等.±800kV特高压直流GIL关键技术研究[J].中国电机工程学报,2008,28(13):1-7.
    [19]杨津基.气体放电[M].北京:科学出版社,1983:273-275.
    [20] VAN BRUNT J R, HERRON T J. Fundamental processes of SF6decomposition and oxidation in glow and corona discharges[J]. IEEE Transactions on Electrical Insulation,1990,25(1):75-94.
    [21] RAIZER P Y. Gas discharge physics[M]. Berlin:Springer-Verlag,1991:69.
    [22] MASAYUKI H, SHINYA O. Insulation characteristics of gas mixtures including perfluorocarbon gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1015-1022.
    [23]唐炬,陈长杰,张晓星,等.微氧对SF6局部放电分解特征组份的影响[J].高电压技术,2011,37(1):8-14.
    [24]唐炬,胡瑶,裘吟君,等. 2种局部放电类型下SF6分解组分检测及特性分析[J].重庆大学学报,2013,36(1):55-61.
    [25] International Electrotechnical Commision. Guidelines for the checking and treatment of sulphur hexafluoride(SF6)taken from electrical equipment and specification for its re-use:IEC 60480:2004[S]. Switzerland:IEC,2004.
    [26]中华人民共和国电力工业部.电力设备预防性实验规程:DL/T 596—2005[S].北京:中国标准出版社,2005.
    [27] CHU F Y. SF6decomposition in gas-insulated equipment[J]. IEEE Transactions on Electrical Insulation,1986,21(5):693-725.
    [28]唐炬,陈长杰,刘帆,等.局部放电下SF6分解组分检测与绝缘缺陷编码识别[J].电网技术,2011,35(1):110-116.
    [29]朱宁,雷志城,徐肖庆,等.负极性直流局部放电下SF6分解特性[J].绝缘材料,2019,52(2):58-63,69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700