基于WRF-SWAN耦合模式的台风“威马逊”波浪场数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of extreme waves generated by Typhoon Rammasun(1409) based on coupled WRF-SWAN model
  • 作者:伍志元 ; 蒋昌波 ; 邓斌 ; 陈杰 ; 曹永港 ; 李廉洁
  • 英文作者:WU Zhi-yuan;JIANG Chang-bo;DENG Bin;CHEN Jie;CAO Yong-gang;LI Lian-jie;School of Hydraulic Engineering, Changsha University of Science & Technology;Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province;School for Marine Science and Technology, University of Massachusetts Dartmouth;South China Sea Marine Survey and Technology Center,State Oceanic Administration;
  • 关键词:台风浪 ; 数值模拟 ; WRF ; SWAN ; 实时双向耦合 ; 南中国海
  • 英文关键词:extreme wave;;numerical simulation;;WRF;;SWAN;;real-time two-way coupled model;;the South China Sea
  • 中文刊名:HYKX
  • 英文刊名:Marine Sciences
  • 机构:长沙理工大学水利工程学院;水沙科学与水灾害防治湖南省重点实验室;美国麻省大学海洋科学与技术学院;国家海洋局南海调查技术中心;
  • 出版日期:2018-09-15
  • 出版单位:海洋科学
  • 年:2018
  • 期:v.42;No.351
  • 基金:国家自然科学基金重点项目(51239001;51839002);国家自然科学基金资助项目(51509023;51879015;51809023);; 水利部珠江河口动力学及伴生过程调控重点实验室开放研究基金项目(2018KJ03);; 国家海洋局南海维权技术与应用重点实验室开放基金资助项目(SCS1606);; 水沙科学与水灾害防治湖南省重点实验室开放基金(2017SS04)~~
  • 语种:中文;
  • 页:HYKX201809009
  • 页数:9
  • CN:09
  • ISSN:37-1151/P
  • 分类号:66-74
摘要
获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。
        Obtaining high-resolution field data of typhoon wind and pressure is the basis of accurate simulation of extreme waves. In previous studies, wind and pressure fields of typhoon were constructed using an empirical model and were used to drive the wave model; however, this method cannot reflect the air dynamic process under the influence of typhoon, and it is difficult to provide high-accuracy data of wind and pressure fields. In the present study,a real-time two-way coupled atmosphere-wave model in the South China Sea(SCS) has been established based on the WRF model and SWAN model, and extreme waves generated by Typhoon Rammasun(1409) were numerically simulated. The results of the numerical simulation were compared with the results of the field observation and the satellite altimeter of Jason-2. The verification results showed that the coupled WRF-SWAN model has a high accuracy in the simulation of extreme waves under the influence of Typhoon Rammasun in the SCS. The simulation results reveal the asymmetrical distribution of wind field and extreme wave field generated by Typhoon Rammasun,and the spatial distribution. The intensity of the typhoon on the right is greater than that on the left of the typhoon track. The real-time two-way coupled atmosphere-wave model based on the WRF model and SWAN model can accurately simulate the dynamic process of typhoon and the temporal and spatial distribution of the extreme waves generated by typhoon; thus, the model can be extended to the simulation analysis of waves in the SCS generated by other typhoons.
引文
[1]栗健,方伟华,张晓宁,等.基于多致灾因子相似的热带气旋检索方法研究:以风暴潮-海浪灾害预评估为例[J].海洋科学,2016,40(8):49-60.Li J,Fang W H,Zhang X N,et al.Similar tropical cyclone retrieval method for rapid potential storm surge and wave disaster loss assessment based on multiple hazard indictors[J].Marine Sciences,2016,40(8):49-60.
    [2]王其松,邓家泉,刘诚,等.叠加风场在南海台风浪数值后报中的应用研究[J].海洋学报,2017,39(7):70-79.Wang Q S,Deng J Q,Liu C,et al.Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea[J].Acta Oceanologica Sinica,2017,39(7):70-79.
    [3]Zhou L,Li Z,Mou L,et al.Numerical simulation of wave field in the South China Sea using WAVEWATCHIII[J].Chinese Journal of Oceanology and Limnology,2014,32(3):656-664.
    [4]Nayak S,Bhaskaran P K.Coastal vulnerability due to extreme waves at Kalpakkam based on historical tropical cyclones in the Bay of Bengal[J].International Journal of Climatology,2014,34(5):1460-1471.
    [5]Yuk J H,Kim K O,Lee H S,et al.Simulation of storm surge and wave due to Typhoon Isewan(5915)[J].China Ocean Engineering,2015,29(4):473-488.
    [6]Drost E J F,Lowe R J,Ivey G N,et al.The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region[J].Continental Shelf Research,2017,139:35-53.
    [7]Yin K,Xu S,Huang W,et al.Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary[J].Ocean Engineering,2017,136:80-93.
    [8]Kim S,Mori N,Mase H,et al.The role of sea surface drag in a coupled surge and wave model for Typhoon Haiyan 2013[J].Ocean Modelling,2015,96:65-84.
    [9]Cao H,Zhou L,Li S,et al.Observation and numerical experiments for drag coefficient under typhoon wind forcing[J].Journal of Ocean University of China,2017,16(1):35-41.
    [10]Shao Z,Liang B,Li H,et al.Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea[J].Applied Ocean Research,2018,71:20-33.
    [11]刘成,郑崇伟,李荣波,等.东中国海大浪频率和极值波高统计分析[J].海洋预报,2014,31(2):8-13.Liu C,Zheng C W,Li R B,et al.Statistics analysis of big wave frequency and extreme wave height in the East China Sea[J].Marine Forecasts,2014,31(2):8-13.
    [12]韩树宗,史玉姣.东中国海台风浪分布特征研究[J].中国海洋大学学报(自然科学版),2013,43(10):1-7.Han S Z,Shi Y J.The distributional character of typhoon waves in the East China Sea[J].Periodical of Ocean University of China,2013,43(10):1-7.
    [13]宗芳伊,吴克俭.基于近20年的SWAN模式海浪模拟结果的南海波浪能分布、变化研究[J].海洋湖沼通报,2014,3:1-12.Zong F Y,Wu K J.Research on distributions and variations of wave energy in South China Sea based on recent 20 years’wave simulation results using SWANwave model[J].Transactions of Oceanology and Limnology,2014,3:1-12.
    [14]梁书秀,孙昭晨,尹洪强,等.基于SWAN模式的南海台风浪推算的影响因素分析[J].海洋科学进展,2015,33(1):19-30.Liang S X,Sun Z C,Yin H Q,et al.Influence factors of typhoon wave forecast in the South Sea by SWANmodel[J].Advances in Marine Science,2015,33(1):19-30.
    [15]应王敏,郑桥,朱陈陈,等.基于SWAN模式的“灿鸿”台风浪数值模拟[J].海洋科学,2017,41(4):108-117.Ying W M,Zheng Q,Zhu C C,et al.Numerical simulation of“CHAN-HOM”Typhoon waves using SWANmodel[J].Marine Sciences,2017,41(4):108-117.
    [16]孙瑞,侯一筠,李健,等.南海北部一次台风浪过程的数值模拟[J].海洋科学,2013,37(12):76-83.Sun R,Hou Y J,Li J,et al.The simulation of a typhoon wave in the northern part of the South China Sea[J].Marine Sciences,2013,37(12):76-83.
    [17]武海浪,陈希,陈徐均,等.台湾苏澳港台风浪数值模拟与分析[J].厦门大学学报(自然版),2015,54(2):207-215.Wu H L,Chen X,Chen X J,et al.The numerical simulation and analysis of the Suao Harbor’s typhoon wave[J].Journal of Xiamen University(Natural Science),2015,54(2):207-215.
    [18]袁凯瑞,商少平,谢燕双,等.台湾海峡台风浪的数值模拟[J].厦门大学学报(自然版),2014,53(3):413-417.Yuan K R,Shan S P,Xie Y S,et al.The simulation of typhoon waves in Taiwan Strait[J].Journal of Xiamen University(Natural Science),2014,53(3):413-417.
    [19]王亚男,王庆元,刘彬贤.黄、渤海冷空气海浪场的集合预报试验[J].海洋学报,2015,37(9):10-16.Wang Y N,Wang Q Y,Liu B X.The ensemble wave forecast and test of cold air wave by using SWANmodel in the Bohai Sea and the Yellow Sea[J].Acta Oceanologica Sinica,2015,37(9):10-16.
    [20]李大鸣,李杨杨,潘番.渤海湾二维温带风暴潮与波浪耦合数学模型[J].上海交通大学学报,2015,49(5):730-736.Li D M,Li Y Y,Pan F.Coupling model of 2-D variable zone storm surge and waves for Bohai Bay[J].Journal of Shanghai Jiaotong University,2015,49(5):730-736.
    [21]刘首华,杨忠良,岳心阳,等.山东省周边海域波浪能资源评估[J].海洋学报,2015,37(7):108-122.Liu S H,Yang Z L,Yue X Y,et al.Wave energy resource assessment in Shandong offshore[J].Acta Oceanologica Sinica,2015,37(7):108-122.
    [22]Warner J C,Armstrong B,He R,et al.Development of a coupled ocean-atmosphere-wave-sediment transport(COAWST)modeling system[J].Ocean Modelling,2010,35(3):230-244.
    [23]Kumar N,Voulgaris G,Warner J C,et al.Implementation of the vortex force formalism in the coupled oceanatmosphere-wave-sediment transport(COAWST)modeling system for inner shelf and surf zone applications[J].Ocean Modelling,2012,47:65-95.
    [24]Zambon J B,He R,Warner J C.Investigation of hurricane Ivan using the coupled ocean-atmosphere-wavesediment transport(COAWST)model[J].Ocean Dynamics,2014,64(11):1535-1554.
    [25]Liu B,Liu H,Xie L,et al.A coupled atmospherewave-ocean modeling system:Simulation of the intensity of an idealized tropical cyclone[J].Monthly Weather Review,2011,139(1):132-152.
    [26]Bennett V C C,Mulligan R P.Evaluation of surface wind fields for prediction of directional ocean wave spectra during Hurricane Sandy[J].Coastal Engineering,2017,125:1-15.
    [27]Laprise R.The Euler equations of motion with hydrostatic pressure as an independent variable[J].Monthly Weather Review,1992,120(1):197-207.
    [28]徐福敏,张长宽,陶建峰.浅水波浪数值模型SWAN的原理及应用综述[J].水科学进展,2004,15(4):538-542.Xu F M,Zhang C K,Tao J F.Mechanism and application of a third generation wave model SWAN for shallow water[J].Advances in Water Science,2004,15(4):538-542.
    [29]Rogers W E,Hwang P A,Wang D W.Investigation of wave growth and decay in the SWAN model:three regional-scale applications[J].Journal of Physical Oceanography,2003,33(2):366-389.
    [30]Larson J,Jacob R,Ong E.The model coupling toolkit:a new Fortran90 toolkit for building multiphysics parallel coupled models[J].The International Journal of High Performance Computing Applications,2005,19(3):277-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700