绿洲边缘人工固沙植被自组织过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self-organization Process of Sand-fixing Plantation in A Desert-oasis Ecotone,Northwestern China
  • 作者:赵文智 ; 郑颖 ; 张格非
  • 英文作者:Zhao Wenzhi;Zheng Ying;Zhang Gefei;Linze Inland River Basin Research Station/Key Laboratory of Inland River Basin Ecohydrology,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:自组织 ; 植被格局 ; 人工固沙植被 ; 梭梭 ; 绿洲边缘
  • 英文关键词:self-organization process;;vegetation patterns;;sand-fixing plantation;;Haloxylon ammodendron;;desert-oasis ecotone
  • 中文刊名:ZGSS
  • 英文刊名:Journal of Desert Research
  • 机构:中国科学院西北生态环境资源研究院中国生态系统研究网络临泽内陆河流域研究站/内陆河流域生态水文重点实验室;中国科学院大学;
  • 出版日期:2018-01-15
  • 出版单位:中国沙漠
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(41471435)
  • 语种:中文;
  • 页:ZGSS201801001
  • 页数:7
  • CN:01
  • ISSN:62-1070/P
  • 分类号:3-9
摘要
在对植被自组织过程研究进展评述的基础上,研究了河西走廊荒漠绿洲边缘人工固沙植被格局40年来自组织及种群自疏过程,发现在干旱区,特别是降水量200mm以下的荒漠区,绿洲边缘雨养或者降水和地下水共同维系的沙丘人工植被也会发生自组织过程,原来基本均匀栽植的植被出现斑块化,最大斑块面积、斑块密度、斑块聚集度在20~30a出现,但种群自疏过程并未遵循随植被发育年龄变化的规律,而与生境与绿洲的距离及生境地下水埋深显著相关。未来应加强在气候变化和人类干扰条件下植被格局发生突变的阈值范围的研究,也应加强干旱区人工植被自组织过程及其变化等的研究。
        The two-phase mosaics of vegetation alternating with bare ground,was frequently observed in arid ecosystem.Theoretical studies suggest that this range of spatial patterns is the result of self-organization as a consequence of resource redistribution.On the basis of the review of self-organized process of vegetation,the spatial patterns and self-thinning process of Haloxylon ammodendron plantation for more than 40 years were analyzed in an oasis-desert ecotone in the Hexi Corridor.Results showed that a self-organized process of sand-fixing plantation would also take place in arid areas especially where precipitation is less than 200 mm.The overall spatial pattern of H.ammodendronshifted from initially uniform distribution to clustered,the landscape patches are becoming fragmented.But the self-thinning process of H.ammodendron plantation don't follow the natural order of the developmental stages,it is most relevant to the distance between the habitats of H.ammodendronand oasis marginal,and the groundwater depth in the habitats of H.ammodendron plantation.Ecosystem may abruptly shifted from one alternative stable state to another one,accompanied with great changes,under climate change and exacerbated human disturbance,the research of threshold range of vegetation pattern regime shift should be strengthened in the future,and the research of self-organized process of the sand-fixing plantation in the arid areas should also be strengthened.
引文
[1]Haken H.Information and Self-organization:A Macroscopic Approach to Complex Systems[M].Berlin,Germany:Springer,2010,262.
    [2]DeAngelis D L.Self-organizing processes in landscape pattern and resilience:a review[J].ISRN Ecology,2012(4/5/6):18.
    [3]Ludwig J A,Tongway D J.Spatial organisation of landscapes and its function in semi-arid woodlands,Australia[J].Landscape Ecology,1995,10(1):51-63.
    [4]Couteron P,Lejeune O.Periodic spotted patterns in semi-arid vegetation explained by apropagation-inhibition model[J].Journal of Ecology,2001,89(4):616-628.
    [5]Zelnik Y R,Kinast S,Yizhaq H,et al.Regime shifts in models of dryland vegetation[J].Philosophical Transactions,2013,371(2004):20120358.
    [6]Rietkerk M,Dekker S C,de Ruiter P C,et al.Self-organized patchiness and catastrophic shifts in ecosystems[J].Science,2004,305(5692):1926-1929.
    [7]Scheffer M,Carpenter S,Foley J A,et al.Catastrophic shifts in ecosystems[J].Nature,2001,413(6856):591-596
    [8]Harris J A,Hobbs R J,Higgs E,et al.Ecological restoration and global climate change[J].Restoration Ecology,2006,14(2):170-176.
    [9]D'Odorico P,Caylor K,Okin G S,et al.On soil moisture vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems[J].Journal of Geophysical Research:Biogeosciences,2007,112(G4):10.
    [10]Cramer M D,Barger N N.Are Namibian"fairy circles"the consequence of self-organizing spatial vegetation patterning?[J].PloS One,2013,8(8):e70876.
    [11]Call C A,Roundy B A.Perspectives and processes in revegetation of arid and semiarid rangelands[J].Journal of Range Management,1991,44(6):543-549.
    [12]Lawley V,Parrott L,Lewis M,et al.Self-organization and complex dynamics of regenerating vegetation in an arid ecosystem:82years of recovery after grazing[J].Journal of Arid Environments,2013,88:156-164.
    [13]Wang G,Ding Y,Shen Y,et al.Environmental degradation in the Hexi Corridor region of China over the last 50years and comprehensive mitigation and rehabilitation strategies[J].Environmental Geology,2003,44(1):68-77.
    [14]Greig-Smith P,Kershaw K A.The significance of pattern in vegetation[J].Plant Ecology,1958,8(3):189-192.
    [15]Valentin C,d'Herbès J M,Poesen J.Soil and water components of banded vegetation patterns[J].Catena,1999,37(1):1-24.
    [16]Leprun J C.The influences of ecological factors on tiger bush and dotted bush patterns along agradient from Mali to northern Burkina Faso[J].Catena,1999,37(1):25-44.
    [17]d'Herbès J M,Valentin C,Tongway D J,et al.Banded Vegetation Patterns and Related Structures[M].New York,USA:Springer,2001:1-19.
    [18]Aguiar M R,Paruelo J M,Sala O E,et al.Ecosystem responses to changes in plant functional type composition:an example from the Patagonian steppe[J].Journal of Vegetation Science,1996,7(3):381-390.
    [19]Bromley J,Brouwer J,Barker A P,et al.The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment,south-west Niger[J].Journal of Hydrology,1997,198(1):1-29.
    [20]Klausmeier C A.Regular and irregular patterns in semiarid vegetation[J].Science,1999,284(5421):1826-1828.
    [21]von Hardenberg J,Meron E,Shachak M,et al.Diversity of vegetation patterns and desertification[J].Physical Review Letters,2001,87(19):198101.
    [22]Turing A M.The chemical basis of morphogenesis[J].Philosophical Transactions of the Royal Society of London B:Biological Sciences,1952,237(641):37-72.
    [23]Lefever R,Lejeune O.On the origin of tiger bush[J].Bulletin of Mathematical Biology,1997,59(2):263-294.
    [24]Rovinsky A B,Menzinger M.Chemical instability induced by a differential flow[J].Physical Review Letters,1992,69(8):1193.
    [25]Borgogno F,D'Odorico P,Laio F,et al.Mathematical models of vegetation pattern formation in ecohydrology[J].Reviews of Geophysics,2009,47(1).
    [26]Manfreda S,McCabe M F,Fiorentino M,et al.Scaling characteristics of spatial patterns of soil moisture from distributed modelling[J].Advances in Water Resources,2007,30(10):2145-2150.
    [27]Manfreda S,Caylor K K,Good S P.An ecohydrological framework to explain shifts in vegetation organization across climatological gradients[J].Ecohydrology,2017,10(3):e1809.
    [28]Vincenot C E,Carteni F,Mazzoleni S,et al.Spatial self-organization of vegetation subject to climatic stress-insights from a system dynamics-individual-based hybrid model[J].Frontiers in Plant Science,2016(7):636-642.
    [29]Schlesinger W H,Abrahams A D,Parsons A J,et al.Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico:I.rainfall simulation experiments[J].Biogeochemistry,1999,45(1):21-34.
    [30]Orians G H,Milewski A V.Ecology of Australia:the effects of nutrient-poor soils and intense fires[J].Biological Reviews,2007,82(3):393-423.
    [31]Houlahan J E,Currie D J,Cottenie K,et al.Compensatory dynamics are rare in natural ecological communities[J].Proceedings of the National Academy of Sciences,2007,104(9):3273-3277.
    [32]Butterfield B J,Betancourt J L,Turner R M,et al.Facilitation drives 65years of vegetation change in the Sonoran Desert[J].Ecology,2010,91(4):1132-1139.
    [33]HilleRisLambers R,Rietkerk M,van den Bosch F,et al.Vegetation pattern formation in semi-arid grazing systems[J].Ecology,2001,82(1):50-61.
    [34]Von Hardenberg J,Kletter A Y,Yizhaq H,et al.Periodic versus scale-free patterns in dryland vegetation[J].Proceedings of the Royal Society of London B:Biological Sciences,2010:277:1771-1776.
    [35]Lefever R,Barbier N,Couteron P,et al.Deeply gapped vegetation patterns:on crown/root allometry,criticality and desertification[J].Journal of Theoretical Biology,2009,261(2):194-209.
    [36]Rietkerk M,Boerlijst M C,van Langevelde F,et al.Self-organization of vegetation in arid ecosystems[J].The American Naturalist,2002,160(4):524-530.
    [37]Nathan J,von Hardenberg J,Meron E.Spatial instabilities untie the exclusion-principle constraint on species coexistence[J].Journal of Theoretical Biology,2013,335:198-204.
    [38]Gilad E,von Hardenberg J,Provenzale A,et al.Ecosystem engineers:from pattern formation to habitat creation[J].Physical Review Letters,2004,93(9):098105.
    [39]Lejeune O,Tlidi M,Lefever R.Vegetation spots and stripes:dissipative structures in arid landscapes[J].International Journal of Quantum Chemistry,2004,98(2):261-271.
    [40]Meron E.Pattern-formation approach to modelling spatially extended ecosystems[J].Ecological Modelling,2012,234:70-82.
    [41]Meron E,Yizhaq H,Gilad E.Localized structures in dryland vegetation:forms and functions[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2007,17(3):037109.
    [42]Padilla F M,Pugnaire F I.The role of nurse plants in the restoration of degraded environments[J].Frontiers in Ecology and the Environment,2006,4(4):196-202.
    [43]Reynolds J F,Virginia R A,Kemp P R,et al.Impact of drought on desert shrubs:effects of seasonality and degree of resource island development[J].Ecological Monographs,1999,69(1):69-106.
    [44]Kinast S,Zelnik Y R,Bel G,et al.A pattern-forming instability co-driven by distinct mechanisms increases pattern diversity[J].arXiv preprint arXiv:2013,1311.0411.
    [45]Tongway D J,Valentin C,Seghieri J.Banded Vegetation Patterning in Arid and Semiarid Environments:Ecological Processes and Consequences for Management[J]New York,USA:Springer-Verlag,2001.
    [46]Kefi S,Rietkerk M,Katul G G.Vegetation pattern shift as a result of rising atmospheric CO 2in arid ecosystems[J].Theoretical Population Biology,2008,74(4):332-344.
    [47]Seuront L,Spilmont N.Self-organized criticality in intertidal microphytobenthos patch patterns[J].Physica A:statistical mechanics and its applications,2002,313(3):513-539.
    [48]Barbier N,Couteron P,Lejoly J,et al.Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems[J].Journal of Ecology,2006,94(3):537-547.
    [49]Janssen R H H,Meinders M B J,Van N E S,et al.Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation–climate system[J].Global Change Biology,2008,14(5):1104-1112.
    [50]张宏,慈龙骏.对荒漠化几个理论问题的初步探讨[J].地理科学,1999,19(5):446-450.
    [51]王蕙,赵文智,常学向.黑河中游荒漠绿洲过渡带土壤水分与植被空间变异[J].生态学报,2007,27(5):1731-1739
    [52]周洪华,陈亚宁,李卫红.塔里木河下游绿洲-荒漠过渡带植物多样性特征及优势种群分布格局[J].中国沙漠,2009,29(4):688-696.
    [53]Liu H,Zhao W,He Z.Self-organized vegetation patterning effects on surface soil hydraulic conductivity:A case study in the Qilian Mountains,China[J].Geoderma,2013,192:362-367.
    [54]何志斌,赵文智.黑河流域荒漠绿洲过渡带两种优势植物种群空间格局特征[J].应用生态学报,2004,15(6):947-952
    [55]张化永,邬建国,韩兴国.植被的组织有序度及其全球格局[J].植物生态学报,2002,26(2):129-139.
    [56]蒋建生,任继周.草地农业生态系统的自组织特性[J].草业学报,2002,11(2):1-6.
    [57]李小雁.干旱地区土壤-植被-水文耦合、响应与适应机制[J].中国科学:地球科学,2011,41(12):1721-1730.
    (1)贝叶斯模型的似然函数为lnV=a+β·lnD(a=lni)。假设平均体积的取值包含有随机误差,其概率分布为P(lnV|·)=normal(a+β·lnD,σ);其中,参数a与β的概率密度函数分别为P(a|·)=normal(μa,σa)和P(β|·)=normal(μβ+εβ,i+εβ,j,σβ);超参数εa,i和εβ,i为反映水分环境的随机变量,εa,j和εβ,j为反映种植年限的随机变量;μβ为包含先验信息的固定变量,其先验分布由综合分析前人研究结果得到,符合[-3.2,0]的均匀分布;其他参数的先验分布均为无信息分布,符合位置参数为0、尺度参数为10的柯西分布。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700