CNTs含量对CNTs/Al微观组织及力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of CNTs content on the microstructure and mechanical properties of CNTs/Al composites
  • 作者:庞秋 ; 胡志力 ; 谷万里 ; 吉国强 ; 孙东立
  • 英文作者:PANG Qiu;HU Zhili;GU Wanli;JI Guoqiang;SUN Dongli;School of Mechanical and Electrical Engineering, Wuhan Donghu University;School of Automotive Engineering, Wuhan University of Technology;School of Mechanical Engineering, Shandong University of Technology;China National Analytical Center;School of Materials Science and Engineering, Harbin Institute of Technology;
  • 关键词:碳纳米管(CNTs) ; Al基复合材料 ; 粉末冶金法 ; 力学性能 ; 显微组织
  • 英文关键词:carbon nanotubes(CNTs);;Al matrix composites;;powder metallurgy method;;mechanical properties;;microstructure
  • 中文刊名:CLKG
  • 英文刊名:Materials Science and Technology
  • 机构:武汉东湖学院机电工程学院;武汉理工大学汽车工程学院;山东理工大学机械工程学院;中国广州分析测试中心;哈尔滨工业大学材料科学与工程学院;
  • 出版日期:2018-01-11 16:58
  • 出版单位:材料科学与工艺
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金项目(51501133);; 湖北省高等学校优秀中青年科技创新团队项目(T201629);; 哈尔滨工业大学先进焊接与连接国家重点实验室开放基金(AWJ-M16-11)
  • 语种:中文;
  • 页:CLKG201901006
  • 页数:9
  • CN:01
  • ISSN:23-1345/TB
  • 分类号:36-44
摘要
为增加碳纳米管(CNTs)在铝基体中的分散性,利用机械球磨-真空热压烧结工艺制备碳纳米管/铝(CNTs/Al)复合材料,采用扫描电子显微镜(SEM)、电子万能试验机和万能摩擦磨损实验机,研究了CNTs质量分数对CNTs/Al复合材料微观组织、力学性能及摩擦磨损性能的影响.结果表明:CNTs经超声波预先分散后分散性增加;当CNTs质量分数为2.0%时,复合材料中CNTs与Al粉之间表现出较好的相容性;随着CNTs含量进一步增加,CNTs团聚现象严重;热压烧结温度600℃时,随着CNTs添加量的增加,铝基复合材料的屈服强度和抗拉强度呈现出明显的先增大后降低的趋势,同时,CNTs/Al复合材料的摩擦因数和磨损率随CNTs含量的增大先减小后增加;CNTs质量分数为2.0%时,复合材料的屈服强度最大值为116 MPa,抗拉强度最大值为245 MPa,与纯Al基体相比,分别提高了78%和1.9倍.2.0%CNTs/Al复合材料可获得较好的摩擦磨损性能,其摩擦系数和磨损率呈现平缓趋势,复合材料的磨痕最浅.
        In order to increase the dispersion of carbon nanotubes(CNTs) in aluminum matrix, CNTs/Al composites were successfully fabricated by the combination of ball-milling and the vacuum sintering. The effects of CNTs contents on the microstructure, mechanical properties, and friction-wear performance of CNTs/Al composites were investigated by means of scanning electron microscopy(SEM), electronic universal testing and friction, and wear testing machines. Results show that the dispersion of CNTs increased after ultrasonic dispersion. When the content of CNTs was 2 wt.%, the CNTs and Al matrix composites showed better compatibility. However, with further increase of CNTs contents, the phenomenon of CNTs reunion was intense. When the sintering temperature was 600 ℃, the tensile and yield strengths of CNTs/Al composites first increased and then decreased with the increase of CNTs contents. Simultaneously, the friction coefficient and wear rate of CNTs/Al composites firstly increased and then decreased with the increase of CNTs contents. When the content of CNTs was 2.0 wt.%, the tensile and yield strengths of CNTs/Al composites reached the maximum of 245 MPa and 116 MPa, which was improved by 1.9 times and 78% compared with pure Al matrix, respectively. In addition, the friction and wear properties of the 2 wt.% CNTs/Al composites were better. The friction coefficient and wear rate curves of the 2 wt.% CNTs/Al composite had a better wear performance and showed a steady state. The grinding marks of the 2 wt.% CNTs/Al composite became smoother.
引文
[1] SALAMA E I, ABBAS A, ESAWI A M K. Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites [J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 84-93. DOI:10.1016/j.compositesa.2017.04.002
    [2] JAVADI A H, MIRDAMADI S H, SHAKHESI S. Process optimization and microstructural analysis of aluminum based composite reinforced by multi-walled carbon nanotubes with various aspect ratios [J]. Materialwissenschaft und Werkstofftechnik, 2017, 48(7): 719-725. DOI:10.1002/mawe.201600495
    [3] 李景瑞, 蒋小松, 刘晚霞, 等. 碳纳米管增强铝基复合材料的界面特性及增强机理研究进展[J].材料导报:综述篇, 2015, 29(1): 31-35. LI Jingrui, JIANG Xiaosong, LIU Wanxia, et al. Research progress of the interface characteristics and strengthening mechanism in carbon nanotube reinforced aluminum matrix composites [J]. Material Review: summary, 2015, 29(1): 31-35.
    [4] 庞秋, 谷万里, 盛文斌. 碳纳米管增强铝基复合材料的研究进展[J]. 材料导报: 综述篇, 2008, 22(12): 41-44. PANG Qiu, GU Wanli, SHENG Wenbin. Research progress in carbon nanotube reinforced aluminum matrix composites [J]. Material Review: summary, 2008, 22(12): 41-44.
    [5] CAVALIERE P, SADEGHI B, SHABANI A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering [J]. Journal of Materials Science, 2017, 52(14):8618-8629. DOI:10.1007/s10853-017-1086-6
    [6] ALDOSHAN A, KHANNA S. Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam [J]. Materials Science and Engineering A, 2017, 689(24):17-24. DOI:10.1016/j.msea.2017.01.100
    [7] ISAZA C A, SILLAS J E L, MEZA J M, et al. Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique [J]. Journal of Composite Materials, 2017, 51(11): 1619-1629. DOI:10.1177/0021998316658784
    [8] SUNDARAM R M, KOZIOL K K, WINDLE A H. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality [J]. Advanced Materials, 2011, 23(43): 5064-5068. DOI:10.1002/adma.201102754
    [9] GUO Baisong, NI Song, YI Jianhong, et al. Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling [J]. Materials Science and Engineering: A, 2017, 698: 282-288. DOI:10.1016/j.msea.2017.05.068
    [10] 邓春锋,马艳霞,薛旭斌,等. 碳纳米管增强2024铝基复合材料的力学性能及断裂特性[J]. 材料科学与工艺,2010,18(2):229-232. DENG Chunfeng, MA Yanxia, XUE Xubin, et al. Mechanical properties and fracture characterization of 2024Al composite reinforced with carbon nanotube [J]. Materials Science and Technology, 2010, 18(2):229-232.
    [11] 许世娇, 肖伯律, 刘振宇, 等. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888. XU Shijiao, XIAO Bolu, LIU Zhenyu, et al. Microstructures and mechanical properties of CNT/Al composites fabricated by high energy ball-milling method [J]. Acta Metallurgica Sinica, 2012, 48(7): 882-888.
    [12] BASTWROS M M H, ESAWI A M K, WIFI A. Friction and wear behavior of Al-CNT composites [J]. Wear, 2013, 307(1/2):164-173.
    [13] LAHA T, AGARWAL A, MCKECHNIE T, et al. Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite [J]. Materials Science and Engineering: A, 2004, 381(1/2):249-258.
    [14] 庞秋,谷万里,冯柳,等. 机械球磨法制备 CNTs/Al复合粉末的工艺过程研究[J]. 热加工工艺, 2009, 38(4): 46-48. PANG Qiu, GU Wanli, FENG Liu, et al. Study on preparation process of CNTs/Al composite powder by mechanical milling [J]. Hot Working Technology, 2009, 38(4): 46-48.
    [15] 杨旭东,陈亚军,师春生,等. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100. YANG Xudong, CHEN Yajun, SHI Chunsheng, et al. Effect of ball-milling process on the microstructure and mechanical properties of in-situ synthesized carbon nanotube reinforced aluminum composites [J]. Journal of Materials Engineering, 2017, 45(9): 93-100.
    [16] ANSARI R, HASSANZADEH-AGHDAM M K, DARVIZEH A. On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites [J]. Mechanics of Materials, 2016, 101: 14-26. DOI:10.1016/j.mechmat.2016.07.008
    [17] 董占青,裴久阳,陈名海,等. 采用粉末冶金与热轧技术制备的碳纳米管增强铝基复合材料的组织和性能研究[J]. 热处理,2015,30(5): 6-10. DONG Zhanqing, PEI Jiuyang, CHEN Minghai, et al. Microstructure and property of carbon nanotube reinforced aluminum-matrix composites prepared by powder metallurgy combined with hot-rolling[J]. Heat Treatment, 2015, 30(5): 6-10.
    [18] 丛洪涛,钟蓉,成会明,等. 单壁纳米碳管增强纳米铝基复合材料的增强效果[J]. 材料研究学报, 2003, 17(2): 132-137. CONG Hongtao, ZHONG Rong, CHENG Huiming, et al. Reinforeing effeets of SWNTs associated with nano-Al base [J]. Chin J Mater Res, 2013, 17(2): 132-137.
    [19] CANDELARIO V M, MORENO R, GUIBERTEAU F, et al. Enhancing the sliding-wear resistance of SiC nanostructured ceramics by adding carbon nanotubes [J]. Journal of the European Ceramic Society, 2016, 36(13): 3083-3089. DOI:10.1016/j.jeurceramsoc.2016.05.004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700