大豆蛋白热改性及其解离缔合反应研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Thermal Modification and Its Dissociation Association Action of Soy Proteins
  • 作者:曾剑华 ; 刘琳琳 ; 杨杨 ; 张娜 ; 石彦国 ; 朱秀清
  • 英文作者:ZENG Jian-hua;LIU Lin-lin;YANG Yang;ZHANG Na;SHI Yan-guo;ZHU Xiu-qing;College of Food Engineering/Key Laboratory of Food Science and Engineering/Key Laboratory of Grain Food and Comprehensive Processing,Harbin University of Commerce;
  • 关键词:大豆分离蛋白 ; 大豆球蛋白 ; 伴大豆球蛋白 ; 大豆脂蛋白 ; 热改性 ; 解离缔合反应
  • 英文关键词:Soybean proteins isolates(SPI);;β-conglycinin;;Conglycinin;;Lipid protein;;Thermal modification;;Dissociation-association action
  • 中文刊名:DDKX
  • 英文刊名:Soybean Science
  • 机构:哈尔滨商业大学食品工程学院/黑龙江省普通高校食品科学与工程重点实验室/黑龙江省谷物食品与综合加工重点实验室;
  • 出版日期:2019-03-01 15:30
  • 出版单位:大豆科学
  • 年:2019
  • 期:v.38;No.171
  • 基金:国家重点研发计划(2016YFD0400402);; 国家自然科学基金面上项目(31871747);; 哈尔滨商业大学研究生创新科研项目(YJSCX2018-539HSD)
  • 语种:中文;
  • 页:DDKX201901022
  • 页数:7
  • CN:01
  • ISSN:23-1227/S
  • 分类号:150-155+166
摘要
大豆蛋白的解离缔合行为能够通过热处理使其发生解离缔合反应从而改变大豆蛋白构象来获得理想功能特性,因此蛋白的热解离缔合行为决定了大豆制品的后期加工特性、品质及其应用范围,是目前研究的热点。本文概述了大豆蛋白组分以及大豆蛋白热改性最新研究现状;综述了大豆分离蛋白、大豆球蛋白、伴大豆球蛋白和大豆脂蛋白热解离缔合反应过程最新研究进展,并分析了大豆蛋白组分在热解离缔合过程中的相互作用;为研究大豆蛋白在热处理过程中的蛋白的解离缔合机制及生产应用提供理论支撑。
        The dissociation and association behavior is the currently hot spots research of soy proteins. Heat treatment contrib-utes to the conformation of the soy protein for obtaining ideal functional properties by dissociation-association reaction. There-fore,the post-processing characteristics,quality and the application range of soybean products were determined by the thermaldissociation-association behavior of soybean protein. In this paper,the latest research status of soy protein components and thethermal modification of soy protein were summarized. And the latest research progress on thermal dissociation-association reac-tion process of soy protein [including SPI(soybean proteins isolates),β-conglycinin,conglycinin,lipid proteins] was re-viewed. Moreover the interaction of soy protein components during the thermal dissociation-association processing was ana-lyzed. In order to provide theoretical support for elucidating the dissociation-association mechanism and the application in pro-duction of soy protein in the heat treatment process.
引文
[1] Liu Y,Yang J,Lei L,et al. 7S protein is more effective than totalsoybean protein isolate in reducing plasma cholesterol[J]. Journalof Functional Foods,2017,36:18-26.
    [2] Chen K I,Erh M H,Su N W,et al. Soyfoods and soybean prod-ucts:From traditional use to modern applications[J]. AppliedMicrobiology&Biotechnology,2012,96(1):9.
    [3] Economics,Statistics and Market Information System. Oil cropsyearbook 2016[R]. UAS:United States Department of Agricul-ture,2016.
    [4] Debruyne I,Riaz M N. Soy base extract:Soymilk and dairy alter-natives[M]. Lendon:Taylor&Francis Group,2006.
    [5] Caragay A B. Cancer-preventive foods and ingredients[J]. Ar-thritis&Rheumatism,1992,25(12):65-68.
    [6] Reynolds L P,Wulsterradcliffe M C,Aaron D K,et al. Impor-tance of animals in agricultural sustainability and food security[J]. Journal of Nutrition,2015,145(7):1377-1379.
    [7] Samoto M,Maebuchi M,Miyazaki C,et al. Abundant proteinsassociated with lecithin in soy protein isolate[J]. Food Chemistry,2007,102(1):317-322.
    [8] Utsumi S. Structure-function relationships of soy proteins[J].Food Proteins&Their Applications,1997:257-291.
    [9] Wu N,Wang L,Yang X,et al. Comparison of flavor volatiles andsome functional properties of different soy protein products[J].Journal of the American Oil Chemists Society,2011,88(10):1621-1631.
    [10] Medic J,Atkinson C,Hurburgh C R. Current knowledge in soy-bean composition[J]. Journal of the American Oil Chemists Socie-ty,2014,91(3):363-384.
    [11] Ringgenberg E. The physico-chemical characterization of soymilkparticles and gelation properties of acid-induced soymilk gels,as afunction of soymilk protein concentration[D]. Guelph:The Uni-versity of Guelph,2011.
    [12]袁德保.大豆蛋白热聚集行为及其机理研究[D].广州:华南理工大学,2010.(Yuan D B. Heat-induced aggregation of soyprotein and its mechanism[D]. Guangzhou:South China Univer-sity of Technology,2010.)
    [13] Sirison J,Matsumiya K,Samoto M,et al. Solubility of soy li-pophilic proteins:Comparison with other soy protein fractions[J].Bioscience Biotechnology and Biochemistry, 2017, 81(4):790-802.
    [14] Wu W,Hettiarachchy N S,Kalapathy U,et al. Functional prop-erties and nutritional quality of alkali-and heat-treated soy proteinisolate[J]. Journal of Food Quality,2010,22(2):119-133.
    [15]源博恩.亚基解离与重聚集对大豆蛋白结构和功能特性的影响[D].广州:华南理工大学,2012.(Yuan B E. Effect ofsubunit dissociation and aggregation on structure and properties[D]. Guangzhou:South China University of Technology,2012.)
    [16]郭健.大豆蛋白热聚集行为控制及其结构表征的研究[D].广州:华南理工大学,2012.(Guo J. Control of soy proteinthermal aggregation behavior and structural characterization of soyprotein aggregate[D]. Guangzhou:South China University ofTechnology,2012.)
    [17] Matsumura Y,Sirison J,Ishi T,et al. Soybean lipophilic pro-teins:Origin and functional properties as affected by interactionwith storage proteins[J]. Current Opinion in Colloid&InterfaceScience,2017,28:120-128.
    [18] Renkema J M S. Formation,structure and rheological properties ofsoy protein gels[J]. Holland:Wageningen Universiteit,2001.
    [19] Chen N,Zhao M,Chassenieux C,et al. Thermal aggregation andgelation of soy globulin at neutral p H[J]. Food Hydrocolloids,2016,61:740-746.
    [20] Chen N,Chassenieux C,Nicolai T. Kinetics of Na Cl induced ge-lation of soy protein aggregates:Effects of temperature,aggregatesize,and protein concentration[J]. Food Hydrocolloids,2017,77:66-74.
    [21] Chen N,Zhao M,Chassenieux C,et al. The effect of addingNa Cl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids,2017,70:88-95.
    [22] Dobson C M. Protein folding and misfolding[J]. Nature,2003,426(6968):884-890.
    [23] Sharif H R,Williams P A,Sharif M K,et al. Current progress in theutilization of native and modified legume proteins as emulsifiers andencapsulants-αreview[J]. Food Hydrocolloids,2017,76:2-16.
    [24] Li F,Kong X,Zhang C,et al. Effect of heat treatment on theproperties of soy protein-stabilised emulsions[J]. InternationalJournal of Food Science&Technology,2011,46(8):1554-1560.
    [25] Keeratiurai M,Corredig M. Effect of dynamic high pressure hom-ogenization on the aggregation state of soy protein[J]. Journal ofAgricultural&Food Chemistry,2009,57(9):3556-3562.
    [26]白明昧,孙泽威,龙国徽,等.热处理对全脂大豆蛋白质分子结构特征、溶解度和体外消化率的影响[J].西北农林科技大学学报(自然科学版),2016,44(11):31-38.(Bai M M,Sun ZW,Long G H,et al. Effect of heat-treatment on molecular struc-ture characteristics,solubility and in vitro digestibility of full-fatsoybean protein[J]. Journal of Northwest A&F University(So-cial Science Edition),2016,44(11):31-38.)
    [27]王中江,张潇元,隋晓楠,等.热处理大豆蛋白体外消化产物结构特征分析[J].食品科学,2017,38(1):20-26.(Wang ZJ,Zhang X Y,Sui X N,et al. Structural characteristics of in vitrodigestion products of heat-treated soybean protein[J]. Food Sci-ence,2017,38(1):20-26.)
    [28] Chen N,Chassenieux C,Niepceron F,et al. Effect of the p H onthermal aggregation and gelation of soy proteins[J]. Food Hydro-colloids,2017,66:27-36.
    [29] German B,Damodaran S,Kinsella J E. Thermal dissociation andassociation behavior of soy proteins[J]. Journal of Agricultural&Food Chemistry,1982,30(5):117-127.
    [30] Petruccelli S,Anon M C. Thermal aggregation of soy protein iso-lates[J]. Journal of Agricultural&Food Chemistry,1995,43(12):3035-3041.
    [31] Utsumi S,Kinsella J E. Structure-function relationships in foodproteins:Subunit interactions in heat-induced gelation of 7S,11S,and soy isolate proteins[J]. Journal of Agricultural&Food Chem-istry,1985,33(2):297-303.
    [32]叶荣飞,杨晓泉,郑田要,等.热变性和热聚集对大豆分离蛋白溶解性的影响[J].食品科学,2008,29(7):106-108.(YeR F,Yang X Q,Zheng T Y,et al. Effects of thermal denaturationand aggregation on solubility of soy protein isolates[J]. Food Sci-ence,2008,29(7):106-108.)
    [33] Jiang J,Xiong Y L,Chen J. p H Shifting alters solubility charac-teristics and thermal stability of soy protein isolate and its globulinfractions in different p H,salt concentration,and temperature con-ditions[J]. Journal of Agricultural&Food Chemistry,2010,58(13):8035-8042.
    [34] Andrews J M,Roberts C J. A Lumry-Eyring nucleated polymeriza-tion model of protein aggregation kinetics:1. Aggregation with pre-equilibrated unfolding[J]. Journal of Physical Chemistry B,2007,111(27):7897-7913.
    [35] He X,Yuan D,Wang J,et al. Thermal aggregation behaviour ofsoy protein:Characteristics of different polypeptides and sub-units[J]. Journal of the Science of Food&Agriculture,2015,96(4):1121-1131.
    [36] Kim K S,Kim S,Yang H J,et al. Changes of glycinin conforma-tion due to pH,heat and salt determined by differential scanningcalorimetry and circular dichroism[J]. International Journal ofFood Science&Technology,2010,39(4):385-393.
    [37] Ruiz-Henestrosa V M P,Martinez M J,Patino J M R,et al. Adynamic light scattering study on the complex assembly of glycininsoy globulin in aqueous solutions[J]. Journal of the American OilChemists Society,2012,89(7):1183-1191.
    [38] Nakamura T,Utsumi S,Mori T. Network structure formation inthermally-induced gelation of glycinin[J]. Journal of Agricultural&Food Chemistry,1984,32(2):349-352.
    [39] Mori T,Nakamura T,Utsumi S. Gelation mechanism of soybean11S globulin:Formation of soluble aggregates as transient interme-diates[J]. Journal of Food Science,2010,47(1):26-30.
    [40] Xiao J,Shi C,Zhang L,et al. Multilevel structural responses ofβ-conglycinin and glycinin under acidic or alkaline heat treatment[J]. Food Research International,2016,89:540-548.
    [41] Tang C H,Wang C S. Formation and characterization of amyloid-like fibrils from soyβ-conglycinin and glycinin[J]. Journal of Ag-ricultural&Food Chemistry,2010,58(20):11058-11066.
    [42] Jiang J,Xiong Y L,Chen J. Role ofβ-conglycinin and glycininsubunits in the p H-shifting-induced structural and physicochemicalchanges of soy protein isolate[J]. Journal of Food Science,2011,76(2):C293-302.
    [43]齐宝坤,赵城彬,江连洲,等.不同热处理温度下大豆11S球蛋白Zeta电位、粒径和红外光谱研究[J/OL].食品科学,2017,http://kns. cnki. net/kcms/detail/11. 2206. TS. 20171227.1327. 044. html.(Qi B K,Zhao C B,Jiang L Z,et al. Researchon zeta potential,particle size and infrared spectroscopy of 11Sglycinin at different heat treatment temperature[J/OL]. Food Sci-ence,2017, http://kns. cnki. net/kcms/detail/11. 2206. TS.20171227. 1327. 044. html.)
    [44]齐宝坤,赵城彬,李杨,等.热处理对大豆11S球蛋白溶解性和二级结构的影响[J/OL].食品科学,2017,http://kns. cnki.net/kcms/detail/11. 2206. TS. 20171227. 1320. 036. html.(Qi BK,Zhao C B,Li Y,et al. Effect of heat treatment on solubilityand secondary structure of 11S glycinin[J/OL]. Food Science,2017,http://kns. cnki. net/kcms/detail/11. 2206. TS. 20171227.1320. 036. html.)
    [45]齐宝坤,赵城彬,江连洲,等.热处理对大豆11S球蛋白表面疏水性的影响及拉曼光谱分析[J/OL].食品科学,2018,39(18):15-20.(Qi B K,Zhao C B,Jiang L Z,et al. Effect ofheat treatment on surface hydrophobicity of 11S glycinin and ramanspectroscopy analysis[J/OL]. Food Science,2018,39(18):15-20.)
    [46] Mills E N,Huang L,Noel T R,et al. Formation of thermally in-duced aggregates of the soya globulin beta-conglycinin[J]. Bio-chimica Et Biophysica Acta,2001,1547(2):339-350.
    [47]刘春雷,魏冬旭,贾烨,等.大豆7S球蛋白热力学特性、溶解性和溶液性质与表面疏水性相关性研究[J].中国油脂,2018,43(3):39-43,49.(Liu C L,Wei D X,Jia Y,et al. Rel-evance between thermodynamic characteristics,solubility,solutionproperties and surface hydrophobicity of soybeanβ-conglycinin(7S)[J]. China Oils and Fats,2018,43(3):39-43,49.)
    [48] Setsuko I,Kazuo S. Salt-induced reconstitution of beta-conglyci-nin from its thermal dissociates[J]. Journal of the AgriculturalChemical Society of Japan,1982,46(6):1481-1488.
    [49] Renkema J M,Gruppen H,Van V T. Influence of p H and ionicstrength on heat-induced formation and rheological properties of soyprotein gels in relation to denaturation and their protein composi-tions[J]. Journal of Agricultural&Food Chemistry,2002,50(21):6064-6071.
    [50] Nagano T,Akasaka T,Nishinari K. Study on the heat-inducedconformational changes ofβ-conglycinin by FTIR and CD analysis[J]. Food Hydrocolloids,1995,9(2):83-89.
    [51] Xiao J,Shi C,Zhang L,et al. Multilevel structural responses ofβ-conglycinin and glycinin under acidic or alkaline heat treatment[J]. Food Research International,2016,89:540-548.
    [52] Jiang J,Chen J,Xiong Y L. Structural and emulsifying propertiesof soy protein isolate subjected to acid and alkaline p H-shiftingprocesses[J]. Journal of Agricultural&Food Chemistry,2009,57(16):7576-7583.
    [53] Tang C H,Wang C S. Formation and characterization of amyloid-like fibrils from soyβ-conglycinin and glycinin[J]. Journal of Ag-ricultural&Food Chemistry,2010,58(20):11058-11066.
    [54] Shao Y Y,Lin K H,Kao Y J. Modification of foaming propertiesof commercial soy protein isolates and concentrates by heat treat-ments[J]. Journal of Food Quality,2016,39(6):695-706.
    [55] Zhu D,Damodaran S. Removal of off-flavour-causing precursors insoy protein by concurrent treatment with phospholipase A2,andcyclodextrins[J]. Food Chemistry,2018,264:319-325.
    [56] Gao Z M,Wang J M,Wu N N,et al. Formation of complex inter-face and stability of oil-in-water(o/w)emulsion prepared by soylipophilic protein nanoparticles[J]. Journal of Agricultural&FoodChemistry,2013,61(32):7838-7847.
    [57] Asanoma M,Kohno M. Soybean protein material for patients withrenal disease and foods made from the same:US,EP 2255674 A1[P]. 2010-12-01.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700