地外天体起飞羽流导流气动力效应仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of plume diversion aerodynamic effect for take-off from celestial bodies outside the Earth
  • 作者:苏杨 ; 蔡国飙 ; 舒燕 ; 叶青 ; 张明星 ; 贺碧蛟
  • 英文作者:SU Yang;CAI Guobiao;SHU Yan;YE Qing;ZHANG Mingxing;HE Bijiao;School of Astronautics,Beihang University;Beijing Institute of Spacecraft System Engineering;Beijing Institute of Space Long March Vehicle;
  • 关键词:计算流体力学/直接模拟蒙特卡罗(CFD/DSMC)耦合 ; 真空羽流 ; 地外天体起飞 ; 力热效应 ; 导流装置
  • 英文关键词:computational fluid dynamics and direct simulation Monte Carlo(CFD/DSMC) coupling;;vacuum plume;;take-off from celestial bodies;;force and thermal effect;;flame deflector
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学宇航学院;北京空间飞行器总体设计部;北京航天长征飞行器研究所;
  • 出版日期:2019-02-26 13:38
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.317
  • 语种:中文;
  • 页:BJHK201907016
  • 页数:9
  • CN:07
  • ISSN:11-2625/V
  • 分类号:146-154
摘要
探测器自地外天体采样返回过程中,发动机羽流作用于起飞平台后返流至起飞器表面,产生气动力效应及干扰力矩。针对圆锥形羽流导流结构,利用计算流体力学/直接模拟蒙特卡罗(CFD/DSMC)耦合方法,对起飞器距离起飞平台200~700 mm,偏转角度0°~5°范围内的羽流导流气动力效应进行了仿真计算。计算结果表明,随着上升距离增加和偏转角度增大,起飞器受到的力矩出现了反向增加现象,严重影响起飞稳定。研究发现,上述现象产生的主要原因为偏转角度增加时,起飞器距离起飞平台较远一侧的羽流与起飞平台作用点由圆锥导流结构逐渐偏移至平面位置,导致羽流作用于起飞平台后的流动方向由贴近起飞平台向侧面流动急剧转变为反弹至起飞器底面方向流动,从而使远离起飞平台的一侧所受力矩高于靠近起飞平台一侧,产生反向力矩。
        During the return progress of the detector from the extraterrestrial celestial body after sampling,the ascent engine plume flows back to the ascender after the reflection from the launching pad upper surface,which causes aerodynamic effect and disturbing torque effect on the ascender. Numerical simulations have been done with the computational fluid dynamics and direct simulation Monte Carlo( CFD/DSMC) coupling method to analyze the plume aerodynamic effect during the takeoff. The influences of takeoff distance of200-700 mm and deflection angle from 0° to 5° of ascender on plume aerodynamic effects have been considered in this paper. It has been found that with the increase of takeoff distance and deflection angle,the torque of the ascendere has been changed from positive to reverse,which seriously affects the takeoff stability. The reason of this phenomenon is considered to be that,when deflection angle increases,the impact point between the plume on the further side of the ascender from the launching pad and the launching pad has moved from the cone flame deflection to the plane. This phenomenon causes plume flow direction to change suddenly from close to the launching pad and flow to the side to rebound from the launching pad and flow to the bottom of the ascender. Eventually,the side of the ascender far from the launching pad is subjected to a higher torque than the side closer to the launching pad,and a reverse torque is generated.
引文
[1]果琳丽,王平,梁鲁,等.载人月面着陆及起飞技术初步研究[J].航天返回与遥感,2013,34(4):10-16.GUO L L,WANG P,LIANG L,et al. Preliminary research on manned lunar landingand lifting off technology[J]. Spacecraft Recovery&Remote Sensing,2013,34(4):10-16(in Chinese).
    [2] CAPORICCI M. European crew and logistics vehicles for ISS and exploration missions:AIAA-2005-3252[R]. Reston,VA:AIAA,2005.
    [3] BENNETT F V. Apollo experience report:Mission planning for lunar module descent and ascent:NASA-TN-D-6846[R].Washington,D. C.:NASA,1972.
    [4] EVANS R,SPARKS O. Launch deflector design criteria and their application to the SATURN C-1 deflector:NASA-TN-D-1275[R]. Washington,D. C.:NASA,1963.
    [5] TSUTSUMI S,KATO S,FUKUDA K,et al. Effect of deflector shape on acoustic field of launch vehicle at lift-off:AIAA-2009-0328[R]. Reston,VA:AIAA,2009.
    [6] SACHDEV J S,AHUJA V,HOSANGADI A,et al. Analysis of flame deflector spray nozzles in rocket engine test stands:AIAA-2010-6972[R]. Reston,VA:AIAA,2010.
    [7] ANOOP P,UNNIKRISHNAN C,SUNDAR B,et al. Thermal analysis of a jet deflector subjected to liquid engine jet exhaust in a static test[J]. Heat Transfer Engineering,2015,36(4):346-351.
    [8] OH H,LEE J,UM H,et al. Numerical study for flame deflector design of a space launch vehicle[J]. Advances in Space Research,2017,59(7):1833-1847.
    [9]贺卫东.发动机真空羽流导流力热效应的CFD/DSMC耦合仿真及试验研究[D].北京:北京理工大学,2015.HE W D. Numerical simulation and experiment research on force and heat effect of vacuum plume with CFD&DSMC coupled method[D]. Beijing:Beijing Institute of Technology,2015(in Chinese).
    [10]贺卫东,党海燕. CFD/DSMC耦合仿真方法在天基发射羽流导流技术研究中的应用[J].导弹与航天运载技术,2015(2):53-57.HE W D,DANG H Y. Application of CFD/DSMC coupling simulation method in the research of space-based launch plume diversion technique[J]. Missiles and Space Vehicles,2015(2):53-57(in Chinese).
    [11]贺卫东,党海燕,鲁志刚,等.基于地外天体起飞的真空羽流导引技术研究方案评述[J].航天器环境工程,2015,32(2):206-210.HE W D,DANG H Y,LU Z G,et al. Review of the studies of vacuum plume diversion technique for probe taking off from celestial bodies outside the Earth[J]. Spacecraft Environment Engineering,2015,32(2):206-210(in Chinese).
    [12]贺卫东,党海燕,许明艳,等.地外天体起飞过程真空羽流导流力热效应研究[J].推进技术,2015,36(8):1151-1156.HE W D,DANG H Y,XU M Y,et al. Research on impact and thermal effect of celestial takeoff vacuum exhaust plume[J].Journal of Propulsion Technology,2015,36(8):1151-1156(in Chinese).
    [13] ZHANG M X,CAI G B,TANG Z Y,et al. Experimental and numerical research on the diversion effect of a conic flame deflector for a lunar module ascent stage[J]. Journal of Aerospace Engineering,2016,29(5):04016021.
    [14]张萃,王刚,刘峰,等.着陆器顶板羽流导向设计及验证技术[J].航天返回与遥感,2016,37(2):34-41.ZHANG C,WANG G,LIU F,et al. Design and verification thechnology of plume guiding device on lander roof[J]. Spacecraft Recovery&Remote Sensing,2016,37(2):34-41(in Chinese).
    [15]黄琳,陈伟芳,吴其芬,等.姿控发动机内流场及高空羽流流场的DSMC一体化数值模拟[J].空气动力学学报,2001,19(4):383-387.HUANG L,CHEN W F,WU Q F,et al. The overall numerical simulation of both high-altitude plume flowfield and inflow region with DSMC method[J]. Acta Aerodynamica Sinica,2001,19(4):383-387(in Chinese).
    [16]程晓丽,李明智,毛铭芳,等.高空羽流场的DSMC计算和实验研究[J].空气动力学学报,2002,20(1):9-14.CHENG X L,LI M Z,MAO M F,et al. Experimental and numerical investigation of a high-altitude plume flow using DSMC method[J]. Acta Aerodynamica Sinica,2002,20(1):9-14(in Chinese).
    [17]黄琳,聂万胜,陈伟芳.姿控发动机高空羽流流场干扰效应的DSMC方法研究[J].空气动力学学报,2003,21(1):104-108.HUANG L,NIE W S,CHEN W F. Studying of multi-plume interference effects for attitude-control thruster with DSMC method[J]. Acta Aerodynamica Sinica,2003,21(1):104-108(in Chinese).
    [18]蔡国飙,贺碧蛟. PWS软件应用于探月着陆器羽流效应数值模拟研究[J].航天器环境工程,2010,27(1):18-23.CAI G B,HE B J. PWS software applied to numerical simulation on plume effect of lunar exploration lander[J]. Spacecraft Environment Engineering,2010,27(1):18-23(in Chinese).
    [19]张熇,蔡国飙,许映乔,等.嫦娥三号着陆器软着陆过程中羽流仿真分析及试验研究[J].中国科学:技术科学,2014,44(4):344-352.ZHANG H,CAI G B,XU Y Q,et al. Simulation and experimental study of the plume during the Chang’E-3 lunar landing[J].Scientia Sinica Technologica,2014,44(4):344-352(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700