单级SBR厌氧/好氧/缺氧处理中期垃圾渗滤液深度脱氮
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen removal from medium-age landfill leachate via anaerobic/aerobic/anoxic process in SBR
  • 作者:李忠明 ; 王淑莹 ; 苗蕾 ; 曹天昊 ; 张为堂 ; 刘文龙 ; 彭永臻
  • 英文作者:LI Zhongming;WANG Shuying;MIAO Lei;CAO Tianhao;ZHANG Weitang;LIU Wenlong;PENG Yongzhen;Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology;
  • 关键词:垃圾渗滤液 ; SBR ; 聚糖菌 ; PHAs ; 糖原 ; 同步硝化反硝化 ; 后置反硝化
  • 英文关键词:landfill leachate;;SBR;;GAOs;;PHAs;;glycogen;;SND;;post-denitrification
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:北京工业大学北京市水质科学与水环境恢复工程重点实验室;
  • 出版日期:2014-11-28 14:00
  • 出版单位:化工学报
  • 年:2015
  • 期:v.66
  • 基金:国家高技术研究发展计划项目(2012AA063406)~~
  • 语种:中文;
  • 页:HGSZ201502035
  • 页数:7
  • CN:02
  • ISSN:11-1946/TQ
  • 分类号:268-274
摘要
为了考察单级SBR处理实际中期垃圾渗滤液深度脱氮的可行性,采用单级SBR在"厌氧/好氧/缺氧"(AOA)运行方式下处理实际中期垃圾渗滤液。试验发现,厌氧/好氧/缺氧交替运行下驯化的微生物能在厌氧段消耗胞内糖原,并将水中部分溶解性有机物以聚羟基脂肪酸酯(PHAs)形式储存;在好氧段微生物消耗胞内PHAs,转化为胞内糖原,氨氧化的同时也伴随着同步硝化反硝化脱氮;好氧段氨氧化结束后贮存的碳源(PHAs和糖原)能为后置缺氧反硝化提供碳源。经长期试验研究,进水COD、NH+4-N、TN浓度分别为6430~9372 mg·L-1、1025.6~1327 mg·L-1、1345.7~1853.9 mg·L-1,出水COD、NH+4-N、TN浓度能达到525~943 mg·L-1、1.2~4.2 mg·L-1、18.9~38.9 mg·L-1。在未投加外碳源的情况下,SBR法AOA运行方式下能够实现中期垃圾渗滤液的深度脱氮,出水TN<40 mg·L-1。其中,好氧段(DO<1 mg·L-1)通过同步硝化反硝化去除TN占总去除量的1/3左右;缺氧后置反硝化去除的TN占总去除量的2/3左右。
        The feasibility of using a single sequencing batch reactor to remove nitrogen from medium-age landfill leachate was examined, and an anaerobic/aerobic/anoxic process in a SBR without extra carbon source addition was presented. Dissolved organic matter could be taken up partially and stored as polyhydroxyalkanoates(PHAs) in the anaerobic stage by the microorganisms operated in the anaerobic/aerobic/anoxic process, with glycogen consumption. In the aerobic stage, ammonia was oxidized and accompanied by loss of tatal nitrogen(TN) via simultaneous nitrification and denitrification. The stored PHAs and glycogen, remaining at the end of aerobic stage could provide carbon source for anoxic denitrification. In the stable phase, the effluent COD, NH+4-N, and TN were 525—943 mg·L-1, 1.2—4.2 mg·L-1 and 18.9—38.9 mg·L-1 respectively when the influent COD, NH+4-N, and TN were 6430—9372 mg·L-1, 1025.6—1327 mg·L-1 and 1345.7—1853.9 mg·L-1, respectively. Nitrogen removal from medium-age landfill leachate could be realized via the anaerobic/aerobic/anoxic process in a SBR with the effluent of TN less than 40 mg·L-1. Almost 1/3 of reduced TN was removed via SND, while 2/3 of reduced TN was removed via post-anoxic denitrification.
引文
[1]Wang Baozhen(王宝贞),Wang Lin(王琳).Treatment and Disposal of Landfill Leachate from Municipal Solids Waste(城市固体废物渗滤液处理与处置)[M].Beijing:Chemical Industry Press,2005
    [2]Grady C P L,Daigger G T,Lim H C.Rotating Biological Contactor[M].New York:Marcel Dekker,1999
    [3]Sun Hongwei(孙洪伟),Wang Shuying(王淑莹),Wang Ximing(王希明),Shi Xiaoning(时晓宁),Peng Yongzhen(彭永臻).Advanced nitrogen removal from landfill leachate with highly concentrated ammonia nitrogen via nitrite in SBR[J].CIESC Journal(化工学报),2009,60(7):1806-1811
    [4]Zhu Rulong(朱如龙),Wang Shuying(王淑莹),Li Jun(李军),Wang Kai(王凯),Miao Lei(苗蕾),Peng Yongzhen(彭永臻).Advanced nitrogen removal of landfill leachate in single stage oxic pulsed SBR process[J].CIESC Journal(化工学报),2012,63(10):3262-3268
    [5]Wang Kai(王凯),Wang Shuying(王淑莹),Zhu Rulong(朱如龙),Miao Lei(苗蕾),Peng Yongzhen(彭永臻).Startup and realization of advanced nitrogen removal of landfill leachate by modified SBR[J].Journal of Southeast University:Natural Science Edition(东南大学学报:自然科学版),2013,43(2):386-391
    [6]Coats E R,Mockos A,Loge F J.Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal[J].Bioresource Technology,2011,102:1019-1027
    [7]Winkler M,Coats E R,Brinkman C K.Advancing post-anoxic denitrification for biological nutrient removal[J].Water Research,2011,45:6119-6130
    [8]Zhang H M,Dong F,Jiang T,Wei Y,Wang T,Yang F L.Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor[J].Enzyme and Microbial Technology,2011,49:215-222
    [9]Yang Q,Gu S B,Peng Y Z,Wang S Y,Liu X H.Progress in the development of control strategies for the SBR process[J].CLEAN-Soil,Air,Water,2010,38(8):732-749
    [10]Wang Y Y,Lu W M,Yang J,et al.A metabolic model and impact factors based on competition between glycogen accumulating organisms and phosphorus accumulating organisms in wastewater treatment[J].Acta Scientiae Circumstantiae,2009,29(6):1131-1138
    [11]Mino T,Liu W,Kurisu F,Matsuo T.Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J].Water Science and Technology,1995,31(2):25-34
    [12]Filipe C,Daigger G T,Grady C.p H as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J].Water Environment Research,2001,73(2):223-232
    [13]Liu W,Nakamura K,Matsuo T,Mino T.Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of PC feeding ratio[J].Water Research,1997,31(6):1430-1438
    [14]Zhu R L,Wang S Y,Li J,Wang K,Miao L,Ma B,Peng Y Z.Biological nitrogen removal from landfill leachate using anaerobic-aerobic process:denitritation via organics in raw leachate and intracellular storage polymers of microorganisms[J].Bioresource Technology,2013,128:401-408
    [15]Vocks M,Adam C,Lesjean B,Gnirss R,Kraume M.Enhanced post-denitrification without addition of an external carbon source in membrane bioreactors[J].Water Research,2005,39(14):3360-3368
    [16]Wang X L,Zeng R,Dai Y,Peng Y Z,Yuan Z G.The denitrification capability of cluster Defluviioccus vanus-related glycogen-accumulating organisms[J].Biotechnology and Bioengineering,2008,99(6):1329-1336
    [17]Zeng R,Lemaire R,Yuan Z,Keller J.A novel wastewater treatment process:simultaneous nitrification,denitrification and phosphorus removal[J].Water Science&Technology,2004,50(10):163-170
    [18]Chen H B,Yang Q,Li X M,Wang Y,Luo K,Zeng G M.Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor[J].Chemosphere,2013,92(10):1349-1355
    [19]Wang K,Wang S Y,Zhu R L,Miao L,Peng Y Z.Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR[J].Bioresource Technology,2013,134:212-218
    [20]Liu W,Mino T,Nakamura K,Matsuo T.Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal[J].Water Research,1996,30(1):75-82
    [21]Liu W,Mino T,Nakamura K,Matsuo T.Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content[J].Journal of Fermentation and Bioengineering,1994,77(5):535-540
    [22]Meng Q J,Yang F L,Liu L F,Meng F G.Effects of COD/N ratio and DO concentration on simultaneous nitrifcation and denitrifcation in an airlift internal circulation membrane bioreactor[J].Journal of Environmental Sciences,2008,20(8):933-939
    [23]Smolders G,Vandermeij J,Vanloosdrecht M,Heijnen J J.A structured metabolic model for anaerobic and aerobic stoicchiometry and kinetics of the biological phosphorus removal process[J].Biotechnology and Bioengineering,1995,47(3):277-287
    [24]Murnleitner E,Kuba T,Vanloosdrecht M,Heijnen J J.An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J].Biotechnology and Bioengineering,1997,54(5):434-450
    [25]Carvalho G,Lemos P C,Oehmen A,Reis M.Denitrifying phosphorus removal:Linking the process performance with the microbial community structure[J].Water Research,2007,41(19):4383-4396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700