铜配合物(bmim)_2[Cu_3(μ_3-Cl)_2(μ-pz)_3Cl_3]离子液体的磁性理论研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical studies on magnetic properties of copper(Ⅱ) complex containing (bmim)_2[Cu_3(μ_3-Cl)_2(μ-pz)_3Cl_3] ionic liquids
  • 作者:赵一伦 ; 沈金铭 ; 尹乾柱 ; 左明辉 ; 汪洋 ; 崔术新
  • 英文作者:ZHAO Yi-lun;SHEN Jin-ming;YIN Qian-zhu;ZUO Ming-hui;WANG Yang;CUI Shu-xin;College of Chemistry and Chenical Engineering,Mudanjiang Normal University;
  • 关键词:金属离子液体 ; 铜配合物 ; 铁磁性 ; 密度泛函理论 ; 对称性破损态
  • 英文关键词:metal ionic liquid;;copper complexe;;ferromagnetic;;density functional theory;;symmetry broken state
  • 中文刊名:FZKB
  • 英文刊名:Journal of Molecular Science
  • 机构:牡丹江师范学院化学化工学院;
  • 出版日期:2019-04-15
  • 出版单位:分子科学学报
  • 年:2019
  • 期:v.35;No.166
  • 基金:黑龙江省教育厅备案项目(1353ZD001,1351MSYZD003);; 牡丹江师范学院国家培育项目(GP2018001);; 大学生创新创业资助项目(201810233003)
  • 语种:中文;
  • 页:FZKB201902013
  • 页数:4
  • CN:02
  • ISSN:22-1262/O4
  • 分类号:93-96
摘要
采用密度泛函理论和对称性破损态方法,研究了三核铜配物(bmim)_2[Cu_3(μ_3-Cl)_2(μ-pz)_3Cl_3]离子液体(bmim+=1-丁基-3甲基咪唑阳离子,pz-=吡唑阴离子)的铁磁性质.通过5种密度泛函方法(B3P86,B3LYP,PBE0,M06和B3PW91)在5个基组(SDD,LANL2DZ,6-31G,6-31++G/SVP和TZVP/SVP)水平下计算了配合物的磁耦合常数.计算结果表明,所有数据都与实验值符号一致,其中在PBE0/SDD水平上,对该配合物的耦合常数计算值为22.03cm-1,与实验数值(15.6cm-1)符合程度最好.
        The ferromagnetic properties of complex (bmim)_2[Cu_3(μ_3-Cl)_2(μ-pz)_3Cl_3] ionic liquids(bmim+=1-butyl3-methylimidazole cationic,pz-=pyrazole anionic)have been inverstigated by DFT and symmetry broken state method.The coupling constant was calculated by different methods(B3 P86,B3 LYP,PBE0 M06 and B3 PW91)and basis sets(SDD,LANL2 DZ,6-31 G,6-31++G/SVP and TZVP/SVP)for the complex.The computational results show that all the data are consistent with the positive sign of experimental value,and the PBE0/SDD level gives the best Jabto be 22.03 cm-1,which is in agreement with the experimental value(15.6 cm-1).
引文
[1]CLARK K D,NACHAM O,PURSLOW J A,et al.[J].Anal Chem,2016,934:9-21.
    [2]OSBORNE S J,WELLENS S,WARD C,et al.[J].Dalton Trans,2015,44:11286-11289.
    [3]MAY B,H9NLE M,HELLER B,et al.[J].[J].Phys Chem Lett,2017,8(6):1137-1141.
    [4]KOHNO Y,COWAN M G,MASUDA M,et al.[J].Chem Commun,2014,50:6633-6636.
    [5]WATANABE M,THOMAS M,ZHANG S,et al.[J].Chem Rev,2017,117(10):7190-7239.
    [6]MORENO D,GONZALEZ-MIQUEL M,FERRO V R,et al.[J].ChemPhysChem,2018,19:1-16.
    [7]ZHANG X,MEGA K,TIAGO C,et al.[J].Adv Energy Mater,2018,8,1702702.
    [8]WANG J I,YAO H W,NIE Y,et al.[J].J Mol Liq,2012,169(5):152-155.
    [9]SHIRVANI S,MALLAH H M,MOOSAVIAN A M,et al.[J].Chem Eng Res Des,2016,109:108-115.
    [10]PEDRO I,ROJAS D P,BLANCO J A,et al.[J].J Magn Magn Mater,2011,323(10):1254-1257.
    [11]CRUZ M M,BORGES R P,GODINHO M,et al.[J].Fluid Phase Equilibria 2013,350(25):43-50.
    [12]PEPPEL T,THIELE,P,TANG M,et al.[J].Inorg Chem,2015,54(3):982-988.
    [13]SESTO R E,MCCLESKEY T M,BURRELL A K,et al.[J].Chem Commun,2008,447-449.
    [14]DAS L,GULERIA A,NEOGY S,et al.[J].RSC Adv,2016,6:92934-92942.
    [15]ZHANG G F,LUO W H,QING Q,et al.[J].CrystEngComm,2018,20:1141-1150.
    [16]ZHANG P F,GONG Y T,LV Y Q,et al.[J].Chem Commun,2012,48:2334-2336.
    [17]AZNAR E,FERRER S,BORRáS J,et al.[J].Eur J Inorg Chem,2006,24:5115-5125.
    [18]PRODIUS D,MACAEV F,LAN Y,et al.[J].Chem Commun,2013,49:9215-9217.
    [19]BOUDALIS A,ROGEZ G,HEINRICH B,et al.[J].Dalton Trans,2017,46:12263-12273.
    [20]DING C,LI Y,WANG Y,et al.[J].Int J Biol Macromol,2018,107:957-964.
    [21]邓琼,刘慧君,丁娟,等.[J].南华大学学报,2007,21:49-52.
    [22]商云龙,唐辉,屈一新,等.[J].计算机与应用化学,2016,33:139-146.
    [23]PINKOWICZ D,PEKA R,DRATH O,et al.[J].Inorg Chem,2010,49(16):7565-7576.
    [24]ZUO M,LIU L,WANG H,et al.[J].J Mol Sci,2017,33(6):516-520.
    [25]CIOFINI I,LAINP P,ZAMBONI M,et al.[J].Chem Eur J,2007,13(19):5360-5377.
    [26]FRISCH M,TRUCKS G,SCHLEGEL H,et al.Gaussian Inc[CP].Pittsburgh PA,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700