纳米器件空间辐射效应机理和模拟试验技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of radiation effects mechanisms and experimental techniques in nano-devices
  • 作者:陈伟 ; 刘杰 ; 马晓华 ; 郭刚 ; 赵元富 ; 郭晓强 ; 罗尹虹 ; 姚志斌 ; 丁李利 ; 王晨辉 ; 陈荣梅 ; 何宝平 ; 赵雯 ; 张凤祁 ; 马武英 ; 翟鹏飞 ; 王祖军 ; 刘天奇 ; 郭红霞 ; 刘建德 ; 杨海亮 ; 胡培培 ; 丛培天 ; 李宗臻
  • 英文作者:Wei Chen;Jie Liu;Xiaohua Ma;Gang Guo;Yuanfu Zhao;Xiaoqiang Guo;Yinhong Luo;Zhibin Yao;Lili Ding;Chenhui Wang;Rongmei Chen;Baoping He;Wen Zhao;Fengqi Zhang;Wuying Ma;Pengfei Zhai;Zujun Wang;Tianqi Liu;Hongxia Guo;JiANDe Liu;Hailiang Yang;Peipei Hu;Peitian Cong;Zongzhen Li;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology;Institute of Modern Physics, Chinese Academy of Sciences;Xidian University,school of microelectronics;China Institute of Atomic Energy;Beijing Microelectronics Technology Institute;Department of Engineering Physics, Tsinghua University;
  • 关键词:纳米器件 ; 空间辐射效应 ; 抗辐射加固 ; 模拟试验
  • 英文关键词:nano-devices;;radiation effects;;radiation hardened;;experimental techniques
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:西北核技术研究所强脉冲辐射环境模拟与效应国家重点实验室;中国科学院近代物理研究所;西安电子科技大学微电子学院;中国原子能研究院抗辐照应用技术创新中心;北京微电子技术研究所;清华大学工程物理系;
  • 出版日期:2018-05-10
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家自然科学基金(11690040,11690043)资助
  • 语种:中文;
  • 页:KXTB201813008
  • 页数:12
  • CN:13
  • ISSN:11-1784/N
  • 分类号:55-66
摘要
电子器件空间辐射效应是影响航天器在轨长期可靠运行的重要因素之一,一直是国际上抗辐射加固技术领域研究的热点和难点.高可靠、高集成度、高性能、低功耗、低成本是未来新一代先进电子系统发展的必然要求,采用更高性能的抗辐射加固纳米器件是必然的趋势.本文在深入调研国内外研究现状的基础上,分析了纳米器件辐射效应面临的新问题.纳米工艺存在着很多不同于大尺寸工艺的特点,沟道长度缩小到十几个纳米,栅氧化层等效厚度小于1 nm.在工艺上引入了纵向逆掺杂阱或横向晕环掺杂技术,以降低栅极诱导漏极漏电效应;在材料上引入了多元半导体材料、应变硅、锗硅、高k栅介质、金属栅极等,以降低器件功耗;在结构上引入了三维Fin FET结构,以增强栅的控制能力.这种趋于物理极限的工艺特点、新材料和新结构的采用产生了许多新的辐射效应现象和机制,模拟试验技术更加复杂,给抗辐射加固技术研究带来了新的挑战.本文综述了纳米器件辐射效应的研究现状和趋势,重点针对28 nm及以下特征工艺纳米器件辐射效应研究及模拟试验的需求,提出了需要研究的科学问题和关键技术,希望能为纳米器件抗辐射加固与空间应用提供参考.
        Radiation damage in electronic devices is one of the key factors determining the survival probability of on-orbit spacecraft. Thus, it has remained an important topic in the field of radiation-hardening technology. High reliability, high integration, high performance, low power consumption, and low cost are the important requirements for the development of next-generation electronic systems. For space electronic systems, the use of radiation-hardened high-performance nano-devices will continue to be an important trend. Based on thorough reviewing of the research status at home and abroad, this paper analyzes new problems faced by nano-devices due to radiation. Nano-device technology is different from that for macroscopic devices. For example, the channel length in nano-devices is reduced to ten nanometers, and the equivalent thickness of their gate oxide is less than one nanometer. In order to reduce the gate-induced drain leakage effect, either vertical inverse doping or transverse halo ring doping is applied to the process. To reduce power consumption, multiple semiconductor materials, such as strained silicon, Ge Si, high k gate dielectric, metal gate, etc., have been introduced. To enhance control over the gate, the structure incorporates 3 D Fin FETs. This process approaches the physical limit, and the adoption of new materials and structures have created new radiation effects and mechanisms. Thus, the experimental techniques become more complex, which brings new challenges to research on radiation-hardening technology. This paper analyzes the present status of domestic and foreign research into radiation effects in nano-devices. Key scientific issues and technologies will be presented, which are needed to study radiation effects and simulation experiments of nano-devices with a feature size of less than 28 nm. Research on photon and heavy ion radiation mechanisms, as well as experimental techniques in nano-devices, should continue receiving focus. In addition, radiation damage mechanisms in nanometer devices should be studied. Heavy-ion micro-beam simulations for the distribution of nano-devices and circuit sensitive areas should be established in order to analyze weak links. A new nano-device and circuit radiation-resistant design method should be proposed. The current survey provides a reference for anti-radiation reinforcement and applications of nano-devices in space.
引文
1 Ecoffet R.On-Orbit Anomalies:Investigations and Root Cause Determination.In:IEEE Nuclear and Space Radiation Effects Conference.Las Vegas,2011
    2 Gass V,Belloni F.Use of COTS components in academic space projects.In:Proceedings of Swiss Electromagnetics Research and Engineering Centre.Dubendorf,2013
    3 Barraud S,Lavieville R,Tabone C,et al.Strained silicon directly on insulator N-and P-FET nanowire transistors.In:Proceedings of
    15 th International Conference on Ultimate Integration on Silicon(ULIS).Stockholm:IEEE,2014
    4 Lee W D,Wang M C,Wang S J,et al.Gate leakage characteristics for 28 nm Hf Zr Ox p MOSFETs after DPN process treatment with different nitrogen concentration.IEEE Trans Nucl Sci,2014,42:3703–3705
    5 Hsu C Y,Chang H G,Chen M J.A method of extracting metal gate high-k material parameters featuring electron gate tunneling current transition.IEEE Trans Electron Devices,2011,58:953–959
    6 Duriez B,Vellianitis G,Van Dal M J H,et al.Scaled p-channel Ge Fin FET with optimized gate stack and record performance integrated on 300 nm Si wafers.In:Proceedings of IEEE International on Electron Devices Meeting.Washington:IEEE,2013
    7 Chen W,Yang H L,Guo X Q,et al.The research status and challenge of space radiation physics and application(in Chinese).Chin Sci Bull,2017,62:978–989[陈伟,杨海亮,郭晓强,等.空间辐射物理及应用研究现状与挑战.科学通报,2017,62:978–989]
    8 Choi B K,Fleetwood D M,Schrimpf R D,et al.Long-term reliability degradation of ultra thin dielectric films due to heavy-ion irradiation.IEEE Trans Nucl Sci,2002,49:3045–3050
    9 Cester A,Gerardin S,Paccagnella A,et al.Electrical stresses on ultra-thin gate oxide SOI MOSFETs after irradiation.IEEE Trans Nucl Sci,2005,52:2252–2258
    10 Haeffner T D,Loveless T D,Zhang E X,et al.Irradiation and temperature effects for a 32 nm RF silicon-on-insulator CMOS process.IEEE Trans Nucl Sci,2014,61:3037–3042
    11 Narasimham B,Hatami S,Anvar A,et al.Bias dependence of single-event upsets in 16 nm Fin FET D-flip-flops,IEEE Trans Nucl Sci,2015,62:2578–2584
    12 Witt G L.Semiconductor Radiation Physics:From Defects to Devices.April.2005.
    13 Raine M,Hubert G,Gaillardin M,et al.Monte Carlo prediction of heavy ion induced MBU sensitivity for SOI SRAMs using radial ionization profile.IEEE Trans Nucl Sci,2011,58:2607–2613
    14 Raine M,Hubert G,Gaillardin M,et al.Impact of the radial ionization profile on SEE prediction for SOI transistors and SRAMs beyond the 32-nm technological node.IEEE Trans Nucl Sci,2011,58:840–847
    15 Zhang Z,Liu J,Hou M,et al.Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers.Chin Phys B,2013,22:096103
    16 Hubert G,Duzellier S,Inguimbert C,et al.Operational SER calculations on the SCA-C orbit using the multi-scales single event phenomena predictive platform(MUSCA SEP3).IEEE Trans Nucl Sci,2009,56:3032–3042
    17 Ridgway M C,Bierschenk T,Giulian R,et al.Tracks and voids in amorphous Ge induced by swift heavy-ion irradiation.Phys Rev Lett,2013,110:245502
    18 Lan C,Xue J,Wang Y,et al.Molecular dynamics simulation of latent track formation inα-quartz.Chin Phys C,2013,37:038201
    19 Kluth P,Schnohr C S,Pakarinen O H,et al.Fine structure in swift heavy ion tracks in amorphous Si O2.Phys Rev Lett,2008,101:175503
    20 Pakarinen O H,Djurabekova F,Nordlund K,et al.Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous Si O2.Nucl Instr Meth Phys Res B,2009,267:1456–1459
    21 Toulemonde M,Trautmann C,Balanzat E,et al.Track formation and fabrication of nanostructures with Me V-ion beams.Nucl Instr Meth Phys Res Sect B,2004,216:1–8
    22 Simoen E,Gaillardin M,Paillet P,et al.Radiation effects in advanced multiple gate and silicon-on-insulator transistors.IEEE Trans Nucl Sci,2013,60:1970–1991
    23 Liu J,Neumann R,Trautmann C,et al.Tracks of swift heavy ions in graphite studied by scanning tunneling microscopy.Phys Rev B,2001,64:184115
    24 Zhai P,Liu J,Zeng J,et al.Evidence for re-crystallization process in the irradiated graphite with heavy ions obtained by Raman spectroscopy.Carbon,2016,101:22–27
    25 Zeng J,Liu J,Yao H J,et al.Comparative study of irradiation effects in graphite and graphene induced by swift heavy ions and highly charged ions.Carbon,2016,100:16–26 26 Guo H,Sun Y,Zhai P,et al.Resonant Raman spectroscopy study of swift heavy ion irradiated Mo S2.Nucl Instr Meth Phys Res Sect B,2016,381:1–5
    27 Hu P,Liu J,Zhang S,et al.Raman investigation of lattice defects and stress induced in In P and Ga N films by swift heavy ion irradiation.Nucl Instr Meth Phys Res Sect B,2016,372:29–37
    28 Conley J F,Suehle J S,Johnston A H,et al.Heavy-ion-induced soft breakdown of thin gate oxides.IEEE Trans Nucl Sci,2001,48:1913–1916
    29 Massengill L W,Choi B K,Fleetwood D M,et al.Heavy-ion-induced breakdown in ultra-thin gate oxides and high-k dielectrics.IEEE Trans Nucl Sci,2001,48:1904–1912
    30 Quinteros C P,Salomone L S,Redin E,et al.Comparative analysis of MIS capacitive structures with high-k dielectrics under gamma,16 O and p radiation.IEEE Trans Nucl Sci,2002,59:767–772
    31 Singh V,Shashank N,Kumar D,et al.Effects of heavy-ion irradiation on the electrical properties of rf-sputtered Hf O2 thin films for advanced CMOS devices.Radiat Eff Defect S,2012,167:204
    32 Singh V,Shashank N,Kumar D,et al.Investigation of the interface trap density and series resistance of a high-k Hf O2-based MOS capacitor:Before and after 50 Me V Li3+ion irradiation.Radiat Eff Defect S,2011,166:80
    33 Zhang Z G,Liu J,Hou M,et al.Investigation of threshold ion range for accurate single event upset measurements in both SOI and bulk technologies.IEEE Trans Nucl Sci,2014,61:1459–1467
    34 Liu B,Liu F.TCAD simulation study of the single-event effects in silicon nano-wire transistors.IEEE Trans Device Mater Reliab,2015,15 :410–416
    35 Yu Q Z,Hu Z L,Ying W,et al.Simulation of single event upset in semiconductor device induced by high energy neutrons(in Chinese).Sci Sin-Phys Mech Astron,2014,44:479–485[于全芝,胡志良,殷雯,等.高能中子诱发半导体器件产生单粒子翻转的模拟计算.中国科学:物理学力学天文学,2014,44:479–485]
    36 Li P,Guo H,Guo Q,et al.Single-event response of the Si Ge HBT in TCAD simulations and laser microbeam experiment.Chin Phys B,2015,24:088502
    37 Schwank J R,Ferlet-Cavrois V,Shaneyfelt M R,et al.Radiation effects in SOI technologies.IEEE Trans Nucl Sci,2003,50:522–538
    38 Lindert N,Chang L,Choi Y K,et al.Sub-60-nm quasi-planar Fin FETs fabricated using a simplified process.IEEE Electron Device Lett,2001,22:487–489
    39 Wang W,Wang P F,Zhang C M,et al.Design of U-shape channel tunnel FETs with Si Ge source region.IEEE Trans Electron Devices,2014,61:193–197
    40 Ohmi S,Kudoh S,Atthi N.Variability improvement by Si surface flattening of electrical characteristics in MOSFETs with high-k Hf ON gate insulator.IEEE Trans Semicond Manuf,2015,28:266–271
    41 Schwank J R,Shaneyfelt M R,Fleetwood D M.Radiation effects in MOS oxides.IEEE Trans Nucl Sci,2008,55:1833–1853
    42 Kulkarni S R,Schrimpf R D,Galloway K F,et al.Total ionizing dose effects on Gep MOSFETs with high-k gate stack:On/off current ratio.IEEE Trans Nucl Sci,2009,56:1926–1930
    43 Cardoso A S,Chakraborty P S,Karaulac N.Single-event transient and total dose response of precision voltage reference circuits designed in a 90-nm Si Ge Bi CMOS technology.IEEE Trans Nucl Sci,2014,61:3210–3217
    44 Francis S A,Zhang C X,Zhang E X,et al.Comparison of charge pumping and 1/f noise in irradiated Ge p MOSFETs.IEEE Trans Nucl Sci,2012,59:735–741
    45 Yang Y,Han G,Gao P,et al.Germanium-tin p-channel tunneling field-effect transistor:Device design and technology demonstration.IEEE Trans Electron Devices,2013,60:4048–4056
    46 Liu M,Han G,Liu Y,et al.Undoped Ge0.92Sn0.08 quantum well PMOSFETs on(001),(011)and(111)substrates with in situ Si2H6 passivation:High hole mobility and dependence of performance on orientation.In:Proceedings of Symposium on IEEE VLSI Technology.Honolulu:IEEE,2014
    47 Wang L,Zhang E X,Schrimpf R D.Total ionizing dose effects on Ge channel p FETs with raised Si0.55Ge0.45 source/drain.IEEE Trans Nucl Sci,2015,62:2421–2416
    48 Seifert N,Jahinuzzaman S,Velamala J,et al.Soft error rate improvements in 14-nm technology featuring second-generation 3D tri-gate transistors.IEEE Trans Nucl Sci,2015,62:2570–2577
    49 El-Mamouni F,Zhang E X,Ronald D,et al.Fin-width dependence of ionizing radiation-induced subthreshold-swing degradation in100 -nm-gate-length Fin FETs.IEEE Trans Nucl Sci,2009,56:3250–3255
    50 Put S,Simoen E,Jurczak M,et al.Influence of fin width on the total dose behavior of p-channel bulk Mug FETs.IEEE Electron Device Lett,2010,31:243–245
    51 Gaillardin M,Girard S,Paillet P,et al.Investigations on the vulnerability of advanced CMOS technologies to MGy dose environments.IEEE Trans Nucl Sci,2013,60:2590–2597
    52 Chatterjee I,Zhang E X,Bhuva B L.Geometry dependence of total-dose effects in bulk Fin FETs.IEEE Trans Nucl Sci,2014,61:2951–2958
    53 El-Mamouni F,Zhang E X,Schrimpf R D,et al.Pulsed laser-induced transient currents in bulk and silicon-on-insulator Fin FETs.In:Proceedings of IEEE International on Reliability Physics Symposiun.Monterey:IEEE,2011
    54 El-Mamouni F,Zhang E X,Ball DR,et al.Heavy-ion-induced current transients in bulk and SOI-Fin FETs.IEEE Trans Nucl Sci,2012,59 :2674–2681
    55 Nsengiyumva P,Ball D R,Kauppila J S,et al.A comparison of the SEU response of planar and Fin FET D flip-flops at advanced technology nodes.IEEE Trans Nucl Sci,2016,63:266–272
    56 Seifert N,Gill B,Jahinuzzaman S,et al.Soft error susceptibilities of 22 nm Tri-gate devices.IEEE Trans Nucl Sci,2012,59:2666–2673
    57 Kauppila J S.Single-event modeling for rad-hard-by-design flows.In:IEEE Nuclear and Space Radiation Effects Conference.Oregon,2016
    58 Li D W,Qin J R,Chen S M.The dependence of process parameters on single event transient in 25 nm Fin FET(in Chinese).J Natl Univ Def Tech,2012,34:127–131[李达维,秦军瑞,陈书明.25 nm鱼鳍型场效应晶体管中单粒子瞬态的工艺参数相关性.国防科技大学学报,2012,34:127–131]
    59 Liu B J,Cai L,Dong Z G.Single event effect in nano Fin FET.Nuclear Phys Rev,2014,31:516–521
    60 Liu Y J.Study of single event effects on SOI Fin FET device and combinational circuit(in Chinese).Dissertation for Master Degree.Xi’an:Xidian University,2015[刘永杰.SOI Fin FET器件与组合逻辑电路单粒子效应研究.硕士学位论文.西安:西安电子科技大学,2015]
    61 Tang D,Li Y H,Zhang G H,et al.Single event upset sensitivity of 45 nm FDSOI and SOI Fin FET SRAM.Sci Sin Tech,2013,56:780 –785
    62 Inguimbert C,Ecoffet R,Falguère D.Electron induced SEUs:Microdosimetry in nano-metric volumes.IEEE Trans Nucl Sci,2015,62:2846–2852
    63 Philippe R.SEE and TID radiation test results of digital circuits designed and manufactured in ST 40 nm/45 nm/65 nm/90 nm/130 nm CMOS technologies.ESA Technical Report,2011
    64 Zhao Y F,Wang L,Yue S G,et al.SEU and SET of 65 nm bulk CMOS flip-flops and their implications for RHBD.IEEE Trans Nucl Sci,2015,62:2666–2672
    65 Hansen D L,Miller E J,Kleinosowski J,et al.Clock,flip-flop,and combinatorial logic contributions to the SEU cross section in 90 nm ASIC technology.IEEE Trans Nucl Sci,2009,56:3542–3550
    66 Zhao X Y,Wang L,Yue S G.Single event transients of scan flip-flopand an SET-immune redundant delay filter(RDF).In:Proceedings of 14th European Conference on Radiation and Its Effects on Components and Systems.Oxford:IEEE,2013
    67 Lilja K,Bounasser M,Wen S J,et al.Single-event performance and layout optimization of flip-flops in a 28-nm bulk technology.IEEE Trans Nucl Sci,2013,60:2782–2788
    68 Ahlbin J R,Atkinson N M,Gadlage M J,et al.Influence of N-well contact area on the pulse width of single-event transients.IEEE Trans Nucl Sci,2011,58:2585–2590
    69 Yue S G,Zhang X L,Zhao X Y,et al.Single event transient pulse width measurement of 65-nm bulk CMOS circuits.J Semicond,2015,36:115006
    70 Carlotti J F,Touboul A D,Ramonda M,et al.Growth of silicon bump induced by swift heavy ion at the silicon oxide-silicon interface.Appl Phys Lett,2006,88:041906
    71 Matthew J G,Jonathan R A,Balaji N,et al.Scaling trends in SET pulse widths in Sub-100 nm bulk CMOS processes.IEEE Trans Nucl Sci,2010,57:3336–3341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700