铁电存储器中高能质子引发的单粒子功能中断效应实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30–90 MeV proton
  • 作者:琚安安 ; 郭红霞 ; 张凤祁 ; 郭维新 ; 欧阳晓平 ; 魏佳男 ; 罗尹虹 ; 钟向丽 ; 李波 ; 秦丽
  • 英文作者:Ju An-An;Guo Hong-Xia;Zhang Feng-Qi;Guo Wei-Xin;Ouyang Xiao-Ping;Wei Jia-Nan;Luo Yin-Hong;Zhong Xiang-Li;Li Bo;Qin Li;Academic Instituton of Material Science and Engineer, Xiangtan University;Northwest Institute of Nuclear Technology;Academic Institution of Nuclear Science and Technology, Xi'an Jiaotong University;
  • 关键词:铁电存储器 ; 中高能质子 ; 单粒子功能中断效应
  • 英文关键词:ferroelectric random access memory;;middle energy proton;;single event functional interrupt
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:湘潭大学材料科学与工程学院;西北核技术研究所;西安交通大学核科学与技术学院;
  • 出版日期:2018-12-08
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11605138,61634008)资助的课题~~
  • 语种:中文;
  • 页:WLXB201823025
  • 页数:7
  • CN:23
  • ISSN:11-1958/O4
  • 分类号:248-254
摘要
利用中国原子能科学研究院的中高能质子实验平台,针对两款商用铁电存储器开展了中高能质子单粒子效应实验研究,发现其中一款器件在质子辐照下发生了单粒子翻转和单粒子功能中断.本文主要针对单粒子功能中断效应展开了后续实验研究.首先通过改变质子能量对器件进行辐照,发现单粒子功能中断截面随质子能量的提高而增加.为进一步研究器件发生单粒子功能中断的机理,利用激光微束平台开展了辅助实验,对铁电存储器的单粒子功能中断效应的敏感区域进行了定位,最后发现铁电存储器单粒子功能中断是由器件外围电路发生的微锁定导致的.
        Ferroelectric random access memory(FRAM) is a promising memory for space application. The performance of FRAM under irradiation environment should be investigated, especially under proton irradiation environment, which dominates the particles in the space environment. The experiments on single event effects are carried out for two types of FRAMs(FM22L16 and FM28 V100) based on the proton cyclotron of China institute of atomic energy. Both dynamic and static mode are tested for each chip under the irradiation of proton in an energy range from 30 MeV to 90 MeV.Single event upsets(SEUs) and single event functional interrupts(SEFIs) are observed only on FM22L16, where the SEFI is recorded as a significantly transient error with or without memory cell upsets. The SEFI can be subdivided into soft SEFI and hard SEFI according to whether those significantly transient errors disappear or not when the irradiation is paused. Single event effect performances of FM22L16 are accurately described, and the SEFI cross section in an energy range from 50 MeV to 90 MeV is obtained experimentally. The cross section of SEFI increases with proton energy increasing and reaches 10~(-3)/cm~2 at 90 MeV. To further study the mechanism of SEFI, the pulsed laser beam with a wavelength of 1064 nm is used to pinpoint the sensitive area of SEFI in the FRAM. Pulsed laser experiment is easy to carry out when single pulsed laser radiates on the device from the back side. Results show that a certain part in peripheral circuit is detected as a sensitive area to SEFI. The sensitive area could be a register or buffer which is vulnerable to irradiation. Only SEUs are observed when the pulsed laser radiates others area of peripheral circuit and memory cell. A hypothesis that a micro latch-up in the CMOS-based peripheral circuit leads to the SEFI is proposed to explain the test results, for the CMOS-based peripheral circuit is sensitive to irradiation. The further reason is the energy deposition in silicon substrate by protons with energies ranging from 30 MeV to 90 MeV through nuclear reaction,which triggers the silicon controlled rectifier structure in the FRAM peripheral circuit. According to the hypothesis, a transient current should be generated in the peripheral circuit when the micro latch-up happens. The transient current is observed on the output of device by using a high frequency oscilloscope which demonstrates the reasonability of the hypothesis.
引文
[1] Dahl B A, Cruz-Colon J, Baumann R C, Rodriguez J A,Zhou C, Rodriguez-Latorre J, Khan S, San T, Trinh T2015 IEEE Radiation Effects Data Workshop(REDW)Boston, MA, USA, July 13–17, 2015 p1
    [2] Zhou Y C, Tang M H 2009 Materials Review 23 1(in Chinese)[周益春,唐明华2009材料导报23 1]
    [3] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
    [4] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q2018 Nanoscale 10 8677
    [5] Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J.Phys. Chem. C 17 9275
    [6] Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q,Cai M Q, Yu H L 2018 Org. Electron. 53 50
    [7] Rusu A, Salvatore G, lonescu A M 2009 International Semiconductor Conference Sinaia, Romania, October12–14, 2009 p517
    [8] Yan S A 2017 Ph. D. Dissertation(Xiangtan:Xiangtan University)(in Chinese)[燕少安2017博士学位论文(湘潭:湘潭大学)]
    [9] Gu K, Li P, Li W, Fan X 2015 Microelectronics&Computer 32 147(in Chinese)[辜科,李平,李威,范雪2015微电子学与计算机32 146]
    [10] Gu K, Li P, Li W 2015 Microelectronics&computer 32110(in Chinese)[辜科,李平,李威2015微电子学与计算机32 110]
    [11] Zhang Z Z, Lei Z F, Yang Z L, Wang X H, Wang B,Liu J, En Y F, Chen H, Li B 2015 IEEE Radiation Effects Data Workshop(REDW)Boston, MA, USA, July13–17, 2015 p1
    [12] Li T S, Chen J, Wang Z Q 2008 Radiation Protection bulletin 26 1(in Chinese)[李桃生,陈军,王志强2008辐射防护通信26 1]
    [13] O’Bryan M V, LaBel K A, Buchner S P, Ladbury R L,Poivey C F, Oldham T R, Campola M J, Carts M A,Berg M D, Sanders A B, Mackey S R 2008 2008 IEEE Radiation Effects Data Workshop(REDW)Tucson, AZ,USA, July 14–18, 2008 p11
    [14] Zhai Y H, Li W, Li P, Hu B, Huo W R, Li J H, Gu K2012 Materials Review 26 34(in Chinese)[翟亚红,李威,李平,胡滨,霍伟荣,李俊宏,辜科2012材料导报26 34]
    [15] Luo Y H, Zhang F Q, Wang Y P, Wang Y M, Guo X Q,Guo H X 2016 Acta Phys. Sin. 65 068501(in Chinese)[罗尹虹,张凤祁,王燕萍,王园明,郭晓强,郭红霞2016物理学报65 068501]
    [16] He A L, Guo G, Chen L, Shen D J, Ren Y, Liu J C,Zhang Z C, Cai L, Shi S T, Wang H, Fan H, Gao L J,Kong F Q 2014 Atomic Energy Science and Technology48 2365(in Chinese)[何安林,郭刚,陈力,沈东军,任义,刘建成,张志超,蔡莉,史淑廷,王惠,范辉,高丽娟,孔福全2014原子能科学技术48 2365]
    [17] Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta Phys. Sin. 62 156107(in Chinese)[张兴尧,郭旗,陆妩,张孝富,郑齐文,崔江维,李豫东,周东2013物理学报62 156107]
    [18] Wei J N, Guo H X, Zhang F Q, Luo Y H, Ding L L, Pan X Y, Zhang Y, Liu Y H 2017 Chin. Phys. B 26 096102
    [19] Wei J N 2017 M. S. Thesis(Xiangtan:Xiangtan University)(in Chinese)[魏佳男2017硕士学位论文(湘潭:湘潭大学)]
    [20] Zhou X J, Yu Z G, Li B 2014 Research&Process of SSE 34 577(in Chinese)[周昕杰,于宗光,李博2014固体电子学研究与进展34 577]
    [21] Xiao X S, Li N, Tong J 2012 IEEE Trans. Nucl. Sci. 59211
    [22] Xuan S X, Li N, Tong J 2013 IEEE Trans. Nucl. Sci.60 3932
    [23] Bosser A L, Gupta V, Javanainen A, Tsiligiannis G,LaLumondiere S D, Brewe D, Ferlet-Cavrois V, Puchner H, Kettunen H, Gil T, Wrobel F, SaignéF, Virtanen A,Dilillo L 2018 IEEE Trans. Nucl. Sci. 10 1109
    [24] Tausch J, Sleeter D, Radaelli D, Puchner H 2007 2007IEEE Radiation Effects Data Workshop(REDW)Honolulu, HI, USA, July 23–27, 2007 p185
    [25] Huang J G, Han J W 2004 Science China 34 121(in Chinese)[黄建国,韩建伟2004中国科学34 121]
    [26] Yang S Y, Cao Z, Xue Y X 2007 Nuclear Electronics&Detection Technology 27 567(in Chinese)[杨世宇,曹洲,薛玉雄2007核电子学与探测技术27 567]
    [27] Lü Q, Zhang C H, Fu X Y, Deng M, Li W H 2015Communication Countermeasures 34 46(in Chinese)[吕强,张朝辉,洑小云,邓明,李文华2015通信对抗34 46]
    [28] Label K A, Moran A K, Hawkins D K, Sanders A B1996 IEEE Radiation Effects Data Workshop(REDW)Indian Wells, CA, USA, July 19–23, 1996 p19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700