猪带绦虫14-3-3基因家族生物信息学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioinformatic analysis of the 14-3-3 gene family of Taenia solium
  • 作者:罗波 ; 李想 ; 张悦 ; 汪涵 ; 卢桃 ; 苏敏 ; 刘丽萍 ; 钟春叶 ; 周必英
  • 英文作者:Chun-ye;ZHOU Bi-ying;Undergraduates of the First Clinical Institute,Zunyi Medical University;Department of Parasitology,Zunyi Medical University;
  • 关键词:猪带绦虫 ; 14-3-3蛋白 ; 基因家族 ; 生物信息学
  • 英文关键词:Taenia solium;;14-3-3protein;;gene family;;bioinformatics
  • 中文刊名:ZISC
  • 英文刊名:Journal of Pathogen Biology
  • 机构:遵义医学院寄生虫学教研室;遵义医学院第一临床学院;
  • 出版日期:2019-01-30
  • 出版单位:中国病原生物学杂志
  • 年:2019
  • 期:v.14;No.145
  • 基金:贵州省科技计划项目(黔科合基础[20181190);; 贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]187);; 遵义医学院大学生创新创业训练计划(遵医201751082)
  • 语种:中文;
  • 页:ZISC201901007
  • 页数:6
  • CN:01
  • ISSN:11-5457/R
  • 分类号:38-42+49
摘要
目的 14-3-3基因家族广泛存在于真核生物体内,参与重要的生命活动过程,且与多种疾病的发生密切相关,本研究旨在进一步了解猪带绦虫14-3-3蛋白家族的序列特征和分类情况。方法采用生物信息学方法对猪带绦虫全基因组的14-3-3基因进行序列分析,包括外显子和内含子组成情况及其编码氨基酸基本特性、并进行蛋白二级结构和三级结构特征、亚细胞定位与系统进化树分析。结果对猪带绦虫全基因组蛋白质数据库进行搜索,获得6个14-3-3蛋白序列。序列分析显示,所有14-3-3基因均具有典型14-3-3结构域,蛋白分子质量介于26.88×103~29.33×10~3之间,等电点范围为4.76~5.12;基因结构分析表明其中1个蛋白基因具有1个内含子,3个蛋白基因具有2个内含子,2个蛋白基因具有3个内含子;系统进化分析显示,猪带绦虫14-3-3蛋白系统进化树主要分为4个进化枝,其中第Ⅱ进化枝包含3个蛋白成员,其它3个蛋白分别位于不同的进化枝上;三级结构预测6个14-3-3蛋白具有较为相似的蛋白结构,均以二聚体的形式存在,每个单体都包含9个反向平行的α-螺旋。结论生物信息学预测猪带绦虫含有6个位于不同进化枝的14-3-3蛋白,为研究其基因功能提供了理论依据。
        Objective The 14-3-3 gene family,which is widely distributed in eukaryotic organisms,is involved in numerous important life processes and is closely related to many diseases.In order to ascertain the sequence characteristics and classification of the 14-3-3 protein family in Taenia solium,the entire genomic database of T.solium was searched,and six 14-3-3 protein sequences were obtained. Methods The 14-3-3 gene sequences were analyzed bioinformatically,including exons and introns,the basic characteristics of amino acid sequences,the features of the secondary and tertiary structure of proteins,subcellular localization,and a phylogenetic analysis. Results Amino acid sequencing indicated that every 14-3-3 has a typical 14-3-3 protein domain.Protein molecular mass ranged from 26.88 kilodaltons to 29.33 kilodaltons,and the isoelectric point ranged from 4.76 to 5.12.Gene structural analysis indicated that one 14-3-3 protein processes one intron,three 14-3-3 proteins process two introns,and two 14-3-3 proteins process three introns.Phylogenetic analysis indicated that the phylogenetic tree can be divided into four clades.Clade II contains three members of the 14-3-3 gene family of T.solium.The other three members belong to different clades.Prediction of the tertiary structure indicated that all six 14-3-3 proteins have a similar protein structure and exist as dimer forms.Each protein monomer contains nine antiparallelα-helices. Conclusion These results can provide a theoretical basis for the further study of the function of the 14-3-3 genes in T.solium.
引文
[1] 马承旭,王宏伟,杨艺萱.猪带绦虫基因组学及猪囊尾蚴病候选疫苗的研究进展[J].中国寄生虫学与寄生虫病杂志,2016,34(2):161-5.
    [2] Hotez PJ,Bernard P."Manifesto"for advancing the control andelimination of neglected tropical diseases[J].Plos Negl Trop Dis,2010,4(5):e718.
    [3] Del Brutto OH,Garcia HH.Neurocysticercosis[J].Handb ClinNeurol,2013(114):313-25.
    [4] Garcia HH,Nash TE,Del Brutto OH.Clinical symptoms,diag-nosis,and treatment of neurocysticercosis[J].Lancet Neurol,2014,13(12):1202-15.
    [5] Wang T,Xue L,Ji X,et al.Cloning and characterization of the14-3-3protein gene from the halotolerant algaDunaliella sali-na[J].Mol Biol Rep,2009,36(1):207-14.
    [6] Chen XQ,Fung YW,Yu AC.Association of 14-3-3gammaand phosphorylated bad attenuates injury in ischemic astrocytes[J].J Cereb Blood Flow Metab,2005,25(3):338-47.
    [7] Peng CY,Graves PR,Thoma RS,et al.Mitotic and G2check-point control:regulation of 14-3-3protein binding by phospho-rylation of Cdc25Con serine-216[J].Science,1997,277(5331):1501-5.
    [8] Freed E,Symons M,Macdonald SG,et al.Binding of 14-3-3proteins to the protein kinase Raf and effects on its activation[J].Science,1994,265(5179):1713-6.
    [9] Riou P,Kj?r S,Garg R,et al.14-3-3proteins interact witha hybrid prenyl-phosphorylation motif to inhibit G proteins[J].Cell,2013,153(3):640-53.
    [10] Pozuelorubio M.14-3-3Proteins are regulators of autophagy[J].Cells,2012,1(4):754-73.
    [11] Phan L,Chou PC,Velazqueztorres G,et al.The cell cycle reg-ulator 14-3-3σopposes and reverses cancer metabolic repro-gramming[J].Nat Commun,2015(6):7530.
    [12] 罗波,李想,周必英.寄生虫14-3-3蛋白的研究进展[J].中国寄生虫学与寄生虫病杂志,2018,36(2):178-83.
    [13] Alkhedery B,Barnwell JW,Galinski MR.Stage-specific expres-sion of 14-3-3in asexual blood-stage Plasmodium[J].MolBiochem Parasit,1999,102(1):117-30.(下转43页)
    [14] Jeanclos EM,Lin L,Treuil MW,et al.The chaperone protein14-3-3eta interacts with the nicotinic acetylcholine receptor al-pha 4subunit.Evidence for a dynamic role in subunit stabiliza-tion[J].J Biol Chem,2001,276(30):28281-90.
    [15] Mcgonigle S,Loschiavo M,Pearce EJ.14-3-3proteins inSchistosoma mansoni;identification of a second epsilon isoform[J].Int J Parasitol,2002,32(6):685-93.
    [16] Sileslucas M,Felleisen RS,Hemphill A,et al.Stage-specific ex-pression of the 14-3-3gene in Echinococcus multilocularis[J].Mol Biochem Parasit,1998,91(2):281-93.
    [17] Inoue M,Nakamura Y,Yasuda K,et al.The 14-3-3Proteinsof Trypanosoma brucei function in motility,cytokinesis,and cellcycle[J].J Biol Chem,2005,280(14):14085-96.
    [18] Liberator P,Anderson J,Feiglin M,et al.Molecular cloning andfunctional expression of mannitol-1-phosphatase from the apicom-plexan parasite Eimeria tenella[J].J Biol Chem,1998,273(7):4237-44.
    [19] 孙敏,何深一,赵广会,等.刚地弓形虫14-3-3蛋白真核表达载体的构建与表达[J].中国寄生虫学与寄生虫病杂志,2012,30(6):438-41.
    [20] Dai WJ,Waldvogel A,Siles-Lucas M,et al.Echinococcus multi-locularis proliferation in mice and respective parasite 14‐3‐3gene expression is mainly controlled by anαβ+CD4+T‐cell‐mediated immune response[J].Immunology,2004,112(3):481-8.
    [21] Weidner JM,Kanatani S,Uchtenhagen H,et al.Migratory acti-vation of parasitized dendritic cells by the protozoan Toxoplasmagondii 14-3-3protein[J].Cell Microbiol,2016,18(11):1537-50.
    [22] 杨梅,李文桂,朱佑明,等.多房棘球绦虫重组Bb-EmⅡ/3-Em14-3-3疫苗对小鼠脾细胞凋亡的影响[J].中国人兽共患病学报,2008,24(11):1032-5.
    [23] 钱春燕,宋丽君余传信,等.抗日本血吸虫14-3-3蛋白单克隆抗体5C6抗原识别表位的鉴定[J].中国血吸虫病防治杂志,2012,24(1):45-9.
    [24] 李宗吉,赵巍.细粒棘球蚴14-3-3蛋白序列、结构及抗原表位的分析[J].国际医学寄生虫病杂志,2015,42(4):221-6.
    [25] Santivanez S,Hernández-González A,Chile N,et al.Proteomicstudy of activated Taenia solium oncospheres[J].Mol BiochemParasit,2010,171(1):32-9.
    [26] Diazmasmela Y,Fragoso G,Ambrosio JR,et al.Immunodiag-nosis of porcine cysticercosis:identification of candidate antigensthrough immunoproteomics[J].Vet J,2013,198(3):656-60.
    [27] Obsilova V,Silhan J,Boura E,et al.14-3-3proteins:a fami-ly of versatile molecular regulators[J].Physiol Res,2008,57Suppl 3(3):S11-21.
    [28] Sileslucas M,Merli M,Gottstein B.14-3-3proteins in Echi-nococcus:their role and potential as protective antigens[J].ExpParasitol,2008,119(4):516-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700