高石梯-磨溪区块碳酸盐岩储层孔隙连通性综合评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive evaluation of pore connectivity in carbonate reservoirs of Gaoshiti-Moxi block
  • 作者:崔利凯 ; 孙建孟 ; 黄宏 ; 张哲夫 ; 王勇军 ; 迟蓬
  • 英文作者:CUI Li-kai;SUN Jian-meng;HUANG Hong;ZHANG Zhe-fu;WANG Yong-jun;CHI Peng;School of Geosciences,China University of Petroleum;South West Branch,China Petroleum Logging Co.,Ltd.;
  • 关键词:地质资源与地质工程 ; 孔隙连通性 ; X射线CT扫描 ; 碳酸盐岩储层 ; 孔隙结构 ; 数字岩心
  • 英文关键词:geological resources and geological engineering;;pore connectivity;;X-ray CT scanning;;carbonate reservoir;;pore structure;;digital core
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:中国石油大学(华东)地球科学与技术学院;中国石油集团测井有限公司西南分公司;
  • 出版日期:2019-07-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.168
  • 基金:国家自然科学基金(41574122,41874138);; 国家科技重大专项(2016ZX05006002-004,2016ZX05052001-03);; 中国石油天然气集团公司科技重大专项(2016E-0604,2016E-0606)
  • 语种:中文;
  • 页:XKXB201904012
  • 页数:10
  • CN:04
  • ISSN:61-1434/N
  • 分类号:84-93
摘要
碳酸盐岩储层发育有孔隙、洞穴和裂缝3种储集空间,孔隙空间组合关系复杂多样,储层物性差异大,均质性差,连通性评价难度大。为了综合评价碳酸盐岩储层孔隙连通性,以X射线CT扫描成像和数字岩心技术为基础,以四川盆地川中地区高石梯-磨溪区块龙王庙组和灯影组碳酸盐岩为例,将孔隙划分为主要孔隙、次要孔隙和死孔隙3种类型,从定性与定量2个方面开展碳酸盐岩孔隙连通性综合评价。结果表明:研究区储层以溶蚀孔隙和溶蚀孔洞为主,同时裂缝较为发育,对储层渗流能力具有显著的改善作用。此外,连通性计算结果表明岩心主要孔隙连通率较高,平均占总孔隙体积的60%以上。主要孔隙占总孔隙的比值与储层渗流能力总体呈正相关关系。通过孔隙结构参数综合分析,对于高孔低渗的样品,孔隙为主要储集空间,但储层渗流能力受喉道半径和配位数影响较大;对于低孔高渗的样品,喉道及配位数对流体渗流控制能力很小,但裂缝及溶洞显著提高了储层孔隙连通性,有效改善了储层的渗流能力。
        There are three types of reservoir spaces in carbonate reservoirs,including pores,caves and fractures.The combination of pore space is diverse,and the reservoir has strong heterogeneity and differs greatly in physical properties,therefore it is difficult to conduct a connectivity evaluation.For comprehensive evaluation of carbonate reservoir pore connectivity,based on X-ray CT scanning and digital core physics,taking the carbonate rocks from Longwangmiao Formation and Dengying Formation of Gaoshiti-Moxi block in Sichuan basin as examples,the pore space was divided into three types,primary pores,secondary pores and dead pores.The comprehensive evaluation of pore connectivity was carried out from both qualitative and quantitative aspects.The results show that the reservoir in the study area is dominated by dissolution pores and dissolution caves.The fractures are also developed,which can significantly improve the permeability of the reservoir.In addition,the results of connectivity calculation show that the connectivity of primary pores is high,accounting for more than 60% of the total pore volume.The ratio of primary pores to total pores is positively correlated with reservoir permeability.Through the comprehensive analyzation of the pore structure parameters,for the samples with high porosity and low permeability,the pores are the main storage space,while the permeability of reservoir is obviously controlled by throat radius and coordination number.For the samples with low porosity and high permeability,the throat and coordination number have little control over permeability.The existence of fractures and caves,however,can improve the pore connectivity,thus promoting the permeability of reservoirs effectively.
引文
[1] 宁传祥,姜振学,高之业,等.用核磁共振和高压压汞定量评价储层孔隙连通性—以沾化凹陷沙三下亚段为例[J].中国矿业大学学报,2017,46(3):578-585.NING Chuan-xiang,JIANG Zhen-xue,GAO Zhi-ye,et al.Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:a case study of the lower section of Es3 in Zhanhua sag[J].Journal of China University of Mining and Technology,2017,46(3):578-585.
    [2] 祝彦贺,陈桂华,梁建设,等.页岩油气甜点识别的综合评价方法[J].中国矿业大学学报,2016,45(2):301-309.ZHU Yan-he,CHEN Gui-hua,LIANG Jian-she,et al.Comprehensive evaluation method of shale oil and shale gas sweet spot identification[J].Journal of China University of Mining and Technology,2016,45(2):301-309.
    [3] 董大忠,邹才能,杨烨,等.中国页岩气勘探开发进展与发展前景[J].石油学报,2012,33(S1):107-114.DONG Da-zhong,ZOU Cai-neng,YANG Ye,et al.Progress and prospects of shale gas exploration and development in China[J].Acta Petrolei Sinica,2012,33(S1):107-114.
    [4] 赵文智,沈安江,胡素云,等.中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J].石油勘探与开发,2012,39(1):1-12.ZHAO Wen-zhi,SHEN An-jiang,HU Su-yun,et al.Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J].Petroleum Exploration and Development,2012,39(1):1-12.
    [5] 何伶,赵伦,李建新,等.碳酸盐岩储集层复杂孔渗关系及影响因素—以滨里海盆地台地相为例[J].石油勘探与开发,2014,41(2):206-214.HE Ling,ZHAO Lun,LI Jian-xin,et al.Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors:a case of platform facies in Pre-Caspian Basin[J].Petroleum Exploration and Development,2014,41(2):206-214.
    [6] 杨保华,吴爱祥,刘金枝.基于数字图像处理的堆浸散体孔隙连通性分析[J].矿冶工程,2013,33(1):18-21.YANG Bao-hua,WU Ai-xiang,LIU Jin-zhi.Analysis of pore connectivity of granular ore media after heap leaching based on digital image processing[J].Mining and Metallurgical Engineering,2013,33(1):18-21.
    [7] 邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-26.ZOU Cai-neng,YANG Zhi,TAO Shi-zhen,et al.Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J].Petroleum Exploration and Development,2012,39(1):13-26.
    [8] 王玉丹,杨玉双,刘可禹,等.非常规油气储集孔隙多尺度连通性的定量显微CT研究[J].矿物岩石地球化学通报,2015,34(1):86-92.WANG Yu-dan,YANG Yu-shuang,LIU Ke-yu,et al.Quantitative and multi-scale characterization of pore connections in tight reservoirs with micro-CT and DCM[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(1):86-92.
    [9] 郑委,鲁晓兵,刘庆杰,等.基于双重逾渗模型的裂隙多孔介质连通性研究[J].岩石力学与工程学报,2011,30(6):1289-1296.ZHENG Wei,LU Xiao-bing,LIU Qing-jie,et al.Study of connectivity of fractured porous media based on dual-percolation model[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1289-1296.
    [10] 赵斌,尚彦军.基于复杂网络理论的页岩纳米孔隙连通性表征[J].工程地质学报,2018,26(2):504-509.ZHAO Bin,SHANG Yan-jun.Characterizing connectivity of nano-sized pores of shale based on complex network theory[J].Journal of Engineering Geology,2018,26(2):504-509.
    [11] 孙亮,王晓琦,金旭,等.微纳米孔隙空间三维表征与连通性定量分析[J].石油勘探与开发,2016,43(3):490-498.SUN Liang,WANG Xiao-qi,JIN Xu,et al.Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J].Petroleum Exploration and Development,2016,43(3):490-498.
    [12] 魏国齐,杜金虎,徐春春,等.四川盆地高石梯-磨溪地区震旦系-寒武系大型气藏特征与聚集模式[J].石油学报,2015,36(1):1-12.WEI Guo-qi,DU Jin-hu,XU Chun-chun,et al.Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(1):1-12.
    [13] 杜金虎,邹才能,徐春春,等.川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J].石油勘探与开发,2014,41(3):268-277.DU Jin-hu,ZOU Cai-neng,XU Chun-chun,et al.Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift,Sichuan Basin[J].Petroleum Exploration and Development,2014,41(3):268-277.
    [14] 邹才能,杜金虎,徐春春,等.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发,2014,41(3):278-293.ZOU Cai-neng,DU Jin-hu,XU Chun-chun,et al.Formation,distribution,resource potential and discovery of the Sinian-cambrian giant gas field,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2014,41(3):278-293.
    [15] 李程辉,李熙喆,高树生,等.碳酸盐岩储集层气水两相渗流实验与气井流入动态曲线-以高石梯-磨溪区块龙王庙组和灯影组为例[J].石油勘探与开发,2017,44(6):930-938.LI Cheng-hui,LI Xi-zhe,GAO Shu-sheng,et al.Experiment on gas-water two-phase seepage and inflow performance curves of gas wells in carbonate reservoirs:a case study of Longwangmiao Formation and Dengying Formation in Gaoshiti-Moxi block,Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):930-938.
    [16] 杨威,魏国齐,赵蓉蓉,等.四川盆地震旦系灯影组岩溶储层特征及展布[J].天然气工业,2014,34(3):55-60.YANG Wei,WEI Guo-qi,ZHAO Rong-rong,et al.Characteristics and distribution of karst reservoirs in the Sinian Dengying Fm,Sichuan Basin[J].Natural Gas Industry,2014,34(3):55-60.
    [17] 姚根顺,郝毅,周进高,等.四川盆地震旦系灯影组储层储集空间的形成与演化[J].天然气工业,2014,34(3):31-37.YAO Gen-shun,HAO Yi,ZHOU Jin-gao,et al.Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J].Natural Gas Industry,2014,34(3):31-37.
    [18] Guan Y,Gong Y,Li W,et al.Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography[J].Journal of Power Source,2011,196:10601-10605.
    [19] Devarapalli R S,Islam A,Faisal T F,et al.Micro-CT and FIB SEM imaging and pore structure characterization of dolomite rock at multiple scales[J].Arabian Journal of Geosciences,2017,10(16):361.
    [20] 白斌,朱如凯,吴松涛,等.利用多尺度CT成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.BAI Bin,ZHU Ru-kai,WU Song-tao,et al.Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone[J].Petroleum Exploration and Development,2013,40(3):329-333.
    [21] Pilotti M.Reconstruction of clastic porous media[J].Transport in Porous Media,2000,41(3):359-364.
    [22] 姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学,2010,40(11):1598-1607.YAO Yan-bin,LIU Da-meng,CAI Yi-dong,et al.Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J].Science China:Earth Science,2010,40(11):1598-1607.
    [23] Müller-Huber E,Sch?n J,B?rner F.Pore space characterization in carbonate rocks:approach to combine nuclear magnetic resonance and elastic wave velocity measurements[J].Journal of Applied Geophysics,2016,127:68-81.
    [24] Dou Q,Sun Y,Sullivan C.Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation,Upper San Andres reservoir,Permian Basin,west Texas[J].Journal of Applied Geophysics,2011,74(1):8-18.
    [25] Jiang L,Wen X T,Zhou D H,et al.The constructing of pore structure factor in carbonate rocks and the inversion of reservoir parameters[J].Applied Geophysics,2012,9(2):223-232.
    [26] 魏国齐,沈平,杨威,等.四川盆地震旦系大气田形成条件与勘探远景区[J].石油勘探与开发,2013,40(2):129-138.WEI Guo-qi,SHEN Ping,YANG Wei,et al.Formation conditions and exploration prospects of Sinian large gas fields,Sichuan Basin[J].Petroleum Exploration and Development,2013,40(2):129-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700