云南荒田大型铅锌矿床的成因:流体包裹体和C-H-O-S-Pb同位素地球化学约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of the Huangtian large lead-zinc deposit in Yunnan Province:constrains from fluid inclusions and C-H-O-S-Pb isotope geochemisty
  • 作者:刘瑞麟 ; 张宝林 ; 武广 ; 沈晓丽 ; 刘军港
  • 英文作者:LIU Ruilin;ZHANG Baolin;WU Guang;SHEN Xiaoli;LIU Jungang;MNL Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chines Academy of Geological Sciences;Key Laboratory of Orogen and Crust Evolution,Ministry of Education,Peking University;Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences;Institute of Earth Science,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Depositional Mineralization & Sedimentary Mineral of Shandong Province,College of Earth Science and Engineering,Shandong University of Science and Technology;Beijing Research Institute of Uranium Geology,Key Laboratory of Uranium Resource Exploration and Evaluation Techniques,CNNC;
  • 关键词:流体包裹体 ; C-H-O-S-Pb同位素 ; 成矿流体 ; 荒田 ; MVT型铅锌矿 ; 官厅铅锌成矿带
  • 英文关键词:fluid inclusions;;C-H-O-S-Pb isotope;;ore-forming fluid;;Huangtian;;MVT Pb-Zn deposit;;Guanting lead-zinc metallogenic belt
  • 中文刊名:DZXE
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;北京大学造山带与地壳演化重点实验室;中国科学院地质与地球物理研究所中国科学院矿产资源研究重点实验室;中国科学院地球科学研究院;中国科学院大学;山东科技大学地球科学与工程学院山东省沉积成矿作用与沉积矿产重点实验室;核工业北京地质研究院中核集团铀资源勘查与评价技术重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地质学报
  • 年:2019
  • 期:v.93
  • 基金:中国科学院知识创新工程重要方向项目“云南红河州主要矿床类型的找矿勘查技术集成示范”(编号KZCX2-YW-Q04-03)的资助成果
  • 语种:中文;
  • 页:DZXE201903012
  • 页数:27
  • CN:03
  • ISSN:11-1951/P
  • 分类号:168-194
摘要
荒田铅锌矿位于扬子板块西南缘,与华夏地块和三江地块相接,属峨眉山大火成岩省的南延部分,川-滇-黔铅锌银多金属成矿域的南部。矿体赋存于上二叠统峨眉山玄武岩底部与下二叠统茅口组接触面上及其附近的玄武质-灰质角砾岩层中。本文应用流体包裹体和C-H-O-S-Pb同位素地球化学研究手段,来探讨荒田铅锌矿的成因。流体包裹体分析表明,成矿流体性质具有阶段性演化特征,早期硫化物阶段(阶段Ⅰ)出现含子矿物包裹体、CO_2包裹体和H_2O包裹体的组合发育特征,均一温度介于245~320℃,平均为270℃;到中期硫化物阶段(阶段Ⅱ)和晚期硫化物阶段(阶段Ⅲ)则逐渐变为以H_2O包裹体为主要类型,均一温度分别介于180~250℃和100~210℃,平均为224℃和174℃。随着成矿作用的进行,成矿流体的均一温度和盐度均表现出从早阶段到晚阶段逐渐降低的趋势。显微激光拉曼光谱分析显示流体包裹体的液相成分主要为H_2O,气相成分为H_2O、CO_2、CH_4以及N_2。碳、氧同位素组成(δ~(13)C_(PDB)值介于-8.54‰~3.76‰,δ~(18)O_(SMOW)值介于8.57‰~24.22‰)在δ~(18)O-δ~(13)C图上分布于原生碳酸岩和海相碳酸盐岩之间,指示CO_2可能来自地幔、海相沉积碳酸盐岩溶解和沉积物中有机质的脱羟基作用。氢氧同位素组成(δD值介于-97.4‰~-71.4‰,δ~(18)O_水值介于-4.6‰~8.0‰)在δD-δ~(18)O图上落在岩浆水和大气降水的过渡带上,推测热液流体运移过程中与顺层下渗的大气降水流体混合,期间可能有海水的加入。矿石硫化物的δ~(34)S值介于-5.5‰~10.3‰,指示矿化剂硫具有多种来源,除了直接来自玄武岩外,还来自古海水硫酸盐和碳酸盐岩地层,硫酸盐通过热化学还原(TSR)过程发生还原作用。矿石硫化物铅的~(208)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(206)Pb/~(204)Pb比值分别为38.320~39.365、15.603~15.860和18.136~18.786,数据分布呈线性趋势,几乎所有点均落在地壳铅平均演化线以上,且位于峨眉山组玄武岩、碳酸盐岩地层和基底岩石的Pb同位素组成范围之内,说明成矿物质具有多源性,铅同位素在成矿之前存在均一化过程。结合成矿物质和成矿流体来源,以及区域成矿地球动力学背景,认为荒田铅锌矿属于密西西比河谷型(MVT)叠加岩浆热液改造型矿床。
        Tectonically located in the conjunction of southwestern Yangtze Block, Cathaysian Block and Sanjiang Block, the Huangtian lead-zinc deposit is in the south of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn metallogenic domain, which belongs to the southern extension of Emeishan Large Igneous Province. Orebodies occur in the contact zone between lower Upper Permain Emeishan basalt and lower Permian Maokou Formation limestone, as well as nearby basaltic-carbonated breccia layers. This study presents new data on fluid inclusions and C-H-O-S-Pb isotopic compositions to discuss the genesis of the Huangtian lead-zinc deposit. Fluid inclusions analyses reveal that ore-forming fluid was characterized by stage evolution. The early sulfide-forming stage(Stage I) contains various types of fluid inclusions, including daughter mineral containing type, CO_2-H_2O type and H_2O type, with homogenization temperatures of 245~320℃(an average of 270℃). Fluid inclusions in the middle sulfide-forming stage(Stage II) and the late sulfide-forming stage(Stage Ⅲ) are dominated by H_2O type, with homogenization temperatures of 180~250℃(an average of 224℃) and 100~210℃(an average of 174℃), respectively. Homogenization temperatures and salinity of the ore-forming fluids gradually decreased from the early stage to late stage. Laser Raman analysis shows that the fluid inclusions are dominated by liquid H_2O, and gaseous H_2O, CO_2, CH_4 and N_2. Carbon isotopic compositions(δ~(13)C_(PDB) from-8.54‰ to 3.76‰) and oxygen isotopic compositions(δ~(18)O_(SMOW) from 8.57‰ to 24.22‰) are plotted in the transition zone of primary carbonatite and marine carbonatite in the δ~(18)O-δ~(13)C diagram, suggesting that CO_2 was probably derived from mantle, dissolution of marine sedimentary carbonate, and dehydroxylation of organic matter in the sediments. Hydrogen isotopic compositions(δD from-97.4‰ to-71.4‰) and oxygen isotopic compositions(δ~(18)O_(H2)O from-4.6‰ to 8.0‰) indicate that the ore-forming fluids were generated from the magmatic fluid, mixed with the meteoric water in later process and perhaps some seawater added. Sulfur isotopic compositions(δ~(34)S from-5.5‰ to 10.3‰) indicate that reduced sulfur was derived from basalts, ancient seawater sulfate and the carbonate strata by thermal-chemical sulfate reduction(TSR). ~(208)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(206)Pb/~(204)Pb ratios of ore sulfides are 38.320 to 39.365, 15.603 to 15.860, and 18.136 to 18.786, respectively, and all the data are plotted above the average line of crustal lead evolution and within the lead isotopic range of Emeishan Formation basalt, carbonatic rock and Proterozoic basement rocks. All these features suggest that ore-forming material was multiple in origin and homogenization of Pb isotopes occurred in hydrothermal fluids before the lead-zinc mineralization. Based on the origin of ore-forming material and fluids, as well as regional metallogenic geodynamic setting, it can be concluded that the Huangtian lead-zinc deposit belongs to an typical MVT deposit superimposed by magmatic hydrothermal reconstruction.
引文
Audetat A, Gunther D, Heinrich C A. 1998. Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science, 279(5359): 2091~2094.
    Audetat A, Gunther D. 1999. Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contributions to Mineralogy and Petrology, 137(1): 1~14.
    Basuki N I, Taylor B E, Spooner E T C. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103(4): 783~799.
    Bodnar R J. 1993. Revised equation and table for determining the freezing-point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683~684.
    Bowers T S, Helgeson H C. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems; metamorphic equilibria at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47(7): 1247~1275.
    Bradley D, Leach D. 2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineralium Deposita, 38(6): 652~667.
    Brown P E. 1989. FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11~12): 1390~1393.
    Bryan S E, Ernst R E. 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86(1~4): 175~202.
    Cai J, Zhang K. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1~4): 35~43.
    Cannon R S, Pierce A P, Antweiler J C, Buck K L. 1961. The data of lead isotope geology related to problems of ore genesis. Economic Geology, 56(1): 1~38.
    Cannon R S, Pierce A P. 1969. Lead isotope guides for Mississippi Valley lead-zinc exploration. US Government Printing Office, 1~24.
    Chaussidon M, Albarède F, Sheppard S M F. 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92(2): 144~156.
    Chen Haoshou. 1983. Lead and sulfer isotope studies of the stratabound polymetallic deposits in China. Mineral Deposit, 2(3): 79~87 (in Chinese with English abstract).
    Chen Yanjing, Zhang Li. 2008. Middle-stage δD-depletion in ore fluids of sulfide-bearing lode deposits: Examples and origin. Geochimica, (4): 353~360 (in Chinese with English abstract).
    Chen Yanjing. 2010. On epizonogenism and genetic classification of hydrothermal deposit. Earth Science Frontiers, 17(2): 27~34 (in Chinese with English abstract).
    Chen Yanjing, Ni Pei, Fan Hongrui, Pirajno F, Lai Yong, Su Wenchao, Zhang Hui. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9); 2085~2108 (in Chinese with English abstract).
    Clayton R N, O’Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057~3067 .
    Collins P L. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435~1444.
    Coplen T B, Kendall C, Hopple J. 1983. Comparison of stable isotope reference samples. Nature, 302(5905): 236~238.
    Cui Yinliang. 2007. The synthetic informational prognosis of metallogenic prospecting and volcanic mineralization of Longbohe copper deposit in Jinping County of Yunnan Province. Doctoral dissertation of Kunming University of Science and Technology, 1~380 (in Chinese with English abstract).
    Czamanske G K, Rye R O. 1974. Experimentallydetermined sulfur isotope fractionations between sphalerite and galena in the temperature range 600 degrees to 275 degrees. Economic Geology, 69(1): 17~25.
    Ding Hui, Ge Wensheng, Dong Lianhui, Deng Gang, Jia Hongxu, Zhang Jiaru, Chen Jiang, Yuan Qiang. 2018. Genesis of the Luyuan gold deposit, East Junggar, Xinjiang: constraints from fluid inclusions and isotopic compositions. Acta Geologica Sinica, 92(4): 787~803 (in Chinese with English abstract).
    Dixon G, Davidson G J. 1996. Stable isotope evidence for thermochemical sulfate reduction in the Dugald river (Australia) strata-bound shale-hosted zinc lead deposit. Chemical Geology, 129(3~4): 227~246.
    Drummond S E, Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80(1): 126~147.
    Evans A M. 2009.Ore Geology and Industrial Minerals: An Introduction. John Wiley & Sons, 1~305.
    Frezzotti M L, Tecce F, Casagli A. 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112(1): 1~20.
    Fu Yangang, Hu Guyue, Tang Juxing, Liu Qiuping, Wang Hao. 2017. Low-sulfidation epithermal Ag-Pb-Zn deposit in Sinongduo, Tibet: tracer application of Si-H-O stable isotope geochemistry. Acta Geologica Sinica, 91(4): 836~848 (in Chinese with English abstract).
    Gao Jianguo, Qin Dexian. 1995. Element geochemical characteristics and ore origin analysis of Pb-Zn polymetallic ore deposit in carbonate rock area of central Yunnan. Yunnan Geology, 14(2): 119~130 (in Chinese with English abstract).
    Heinrich C A. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry, 65(1): 363~387.
    Henley R W, Truesdell A H, Barton P B, Whitney J A. 1984. Fluid-mineral equilibria in hydrothermal systems. Society of Economic Geologists El Paso, TX, 1~258.
    Hoefs J. 1997. Stable Isotope Geochemistry. Berlin: Springer, 1~281.
    Huang Zhilong, Chen Jin, Han Runsheng, Li Wenbo, Liu Congqiang, Zhang Zhenliang, Ma Deyun, Gao Derong, Yang Hailin. 2004. The Geochemistry and Genesis of the Superlarge Lead-Zinc Deposit in Yunnan Province: the Relationship between the Basalt of Emei Mountain and the Lead and Zinc Mineralization. Beijing: Geological Publishing House, 1~154 (in Chinese with English abstract).
    Jorgensen B B, Isaksen M F, Jannasch H W. 1992. Bacterialsulfate reduction above 100℃ in deep-sea hydrothermal vent sediments. Science, 258(5089): 1756~1757.
    Kesler S E. 2005. Ore-forming fluids. Elements, 1(1): 13~18.
    Leach D L, Bradley D C, Huston D, Pisarevsky S A, Taylor R D, Gardoll S J. 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105(3): 593~625.
    Leach D L, Bradley D, Lewchuk M T, Symons D T, de Marsily G, Brannon J. 2001. Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Mineralium Deposita, 36(8): 711~740.
    Li Dengfeng, Zhang Li, Zheng Yi. 2013. Fluid inclusion study and ore genesis of the Talate Fe-Pb-Zn deposit in Altay, Xinjiang. Acta Petrologica Sinica, 29(1): 178~190 (in Chinese with English abstract).
    Li Guowu, Yang Guangbin, Yang Xueguang. 1998. Sulfur and lead isotopic characteristics of volcanogenic silver polymetallic mineralization zone in the Huangtian-Xiadong area, Jianshui, Yunnan and their geological implications. Geology-Geochemisty, 57(4): 21~26 (in Chinese with English abstract).
    Li Lianju, Liu Hongtao, Liu Jishun. 1999. A discussion on the source bed of Pb-Zn-Ag deposits in northeast Yunnan. Geological Exploration for Non-ferrous Metals, 8(6): 333~339 (in Chinese with English abstract).
    Li N, Chen Y, Ulrich T, Lai Y. 2012. Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Mineralium Deposita, 47(5): 467~482.
    Li W, Huang Z, Yin M. 2007. Dating of the giant Huize Zn-Pb ore field of Yunnan Province, Southwest China: Constraints from the Sm-Nd system in hydrothermal calcite. Resource Geology, 57(1): 90~97.
    Li Wenbo, Huang Zhilong, Zhang Guan. 2006. Sources of the ore metals of the Huize ore field in Yunnan Province: constrains from Pb, S, C, O and Sr isotope geochemistry. Acta Petologica Sinica, 22(10): 2567~2580 (in Chinese with English abstract).
    Liu C, Zhu R. 2009. Geodynamic significances of the Emeishan basalts. Earth Science Frontiers, 16(2): 52~69.
    Liu Hechang, Lin Wenda. 1999. Study on the rule of zinc deposit in Yunnan Province. Kunming: Yunnan University Press, 1~131 (in Chinese with English abstract).
    Liu Jiajun, He Mingqin, Li Zhiming, Yuping, Li Chaoyang, Zhang Qian, Yang Weiguang, Yang Aiping. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping silver copper polymetallic ore concentration area in Lanping basin of Yunnan Province and its significance. Mineral Deposits, 23(1): 1~10 (in Chinese with English abstract).
    Liu Jianming, Liu Jiajun. 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 17(4): 448~456 (in Chinese with English abstract).
    Lu Huanzhang. 2004. Fluid Inclusion. Beijing: Science Press, 1~487 (in Chinese with English abstract).
    Lu Rui, Miu Baihu, Xu Zhaowen, Lu Jianjun, Wang Rucheng, Zuo Changhu, Qu Jingbao, Zhao Zengxia. 2017. Isotopic tracer of ore-forming material source from the Qingshuitang lead-zinc deposit, Qidong County, Hunan Province. Acta Geologica Sinica, 91(6): 1285~1298 (in Chinese with English abstract).
    Luo Junlie. 1995a. Mineralization series of Yunnan deposit. Yunnan Geology, 14(4): 251~262 (in Chinese with English abstract).
    Luo Junlie. 1995b. Regional metallogenic model of Yunnan deposit. Yunnan Geology, 14(4): 263~275 (in Chinese with English abstract).
    Ma Zhendong. 1986. The geological indicators of lead isotopes. Earth Sciences-Journal of Wuhan College of Geology, 11(4): 437~443 (in Chinese with English abstract).
    Mao Jingwen, He Ying, Ding Tiping. 2002. Mantle fluids involved in metallogenesis of Jiaodong (East Shandong) gold district: evidence of C, O and H isotopes. Mineral Deposit, 21(2): 121~128 (in Chinese with English abstract).
    Moncada D, Mutchler S, Nieto A, Reynolds T J, Rimstidt J D, Bodnar R J. 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114(1): 20~35.
    Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551~578.
    Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy, 16(1): 491~560.
    Ohmoto H, Goldhaber. 1997. Sulfur and carbon isotopes. Geochemistry of Hydrothermal Ore Deposits, 3(1): 517~611.
    Pirajno F. 2008. Hydrothermal Processes and Mineral Systems. Berlin: Springer, 597~597.
    Qin Dexian, Meng Qing. 1994. The study of geochemistry and genetic causes of lead-zinc deposits in Yunnan. Geological Sciences, 29(1): 29~40 (in Chinese with English abstract).
    Qin Dexian. 1993. The geological characteristics of lead and zinc deposits in the carbonate rocks of Yunnan province, and its genetic research. Minerals and Geology, 33(7): 14~22 (in Chinese).
    Ramboz C, Pichavant M, Weisbrod A. 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chemical Geology, 37(1): 29~48.
    Ren Shunli, Li Yanhe, Zeng Pusheng, Qiu Wenlong, Fan Changfu, Hu Guyue. 2018. Effect of sulfate evaporate salt layer in mineralization of the Huize and Maopinglead-zinc deposits in Yunnan: evidence from sulfur isotope. Acta Geologica Sinica, 92(5): 1041~1055 (in Chinese with English abstract).
    Roedder E. 1976. Fluid inclusion evidence on the genesis of ores in sedimentary and volcanic rocks. Handbook of Stratabound and Stratiform Ore Deposits, 3(1): 67~110.
    Roedder E. 1984. Fluid Inclusions. Reviews in Mineralogy, Mineralogical Society of America, Washington, DC, 1~646.
    Rye R O. 1974. A comparison of sphalerite-galena sulfur isotope temperatures with filling temperatures of fluid inclusions. Economic Geology, 69(1): 26~32.
    Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: a review. Economic Geology, 69(6): 826~842.
    Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633~677.
    Shellnutt J G, Denyszyn S W, Mundil R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research, 22(1): 118~126.
    Shellnutt J G, Zhou M, Yan D, Wang Y. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine, 145(3): 373~388.
    Shu L, Faure M, Wang B, Zhou X, Song B. 2008. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151~165.
    Shu Peihua, Yang Jun, Zhang Yantao. 2012. A new explanation of genesis of the Jianshui-Xiadong Pb-Zn-Ag polymetallic deposit. Yunnan Geology, 31(4): 453~455 (in Chinese with English abstract).
    Spangenberg J, Fontboté L, Sharp Z D, Hunziker J. 1996. Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district, central Peru: a quantitative modeling on mixing processes and CO2 degassing. Chemical Geology, 133(1): 289~315.
    Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207~221.
    Tang Yiang, Lai Jianqing, Yang Mu, Mei Jiajing, Liu Qi, Wu Jian, Zhan Houcheng, Guo Lanxuan, Hu Lifang, He Qiujiao. 2017. Characteristics of fluid inclusions of the Yiliu tungsten deposit in Shaoguan, Guangdong Province and implications for metallogenesis. Acta Geologica Sinica, 91(10): 2240~2255 (in Chinese with English abstract).
    Taylor H P, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher Seedistrict, West Germany and the Aln district, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407~430.
    Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. EconomicGeology, 69(6): 843~883.
    Wang J, Li Z, Ni S. 2003. Origin of ore-forming fluids of Mississippi Valley-type (MVT) Pb-Zn deposits in Kangdian area, China. Chinese Journal of Geochemistry, 22(4): 369~376.
    Worden R H, Smalley P C, Oxtoby N H. 1995. Gas scouring by thermochemical sulfate reduction at 140 degrees. AAPG Bulletin, 79(6): 854~863.
    Wu Jianzhong, Yu Hongping. 2011. Metallogenic process of the lead-zinc polymetallic deposits in eastern Yunnan Province. Geology and Exploration, 47(5): 755~764 (in Chinese with English abstract).
    Wu Kaixing, Hu Ruizhong, Bi Xianwu, Peng Jiantang, Tang Qunli. 2002. Ore lead isotopic tracer mineralization material source: a review. Geology-Geochemistry, 30(3): 73~81 (in Chinese with English abstract).
    Xu Dong, Jiang Chengxing, Wang Jianfei. 2009. The prospecting potentiality of Pb-Zn-Ag deposit in the area from Dalenshan of Shiping to Xiadong of Jianshui in Yunnan. Yunnan Geology, 28(3): 243~249 (in Chinese with English abstract).
    Xu P H, Yang J, Zhang Y T. 2012. A new genetic solution for the formation of lead and zinc silver polymetallic deposits in JianshuiXiadong. Yunnan Geology, 31(4): 453~455 (in Chinese with English abstract).
    Zartman R E, Doe B R. 1981. Plumbotectonics-the model. Tectonophysics, 75(1): 135~162.
    Zhang Changqing. 2008. The mineralization model of the Mississippi type (MVT) lead-zinc deposit in the border region of Sichuan, China. Beijing: China Academy of Geological Sciences, 1~177 (in Chinese with English abstract).
    Zhang Dehui. 1997. The significance of fluidizing and mixing in hydrothermal mineralization. Advance in Earth Science, 12(6): 49~55 (in Chinese with English abstract).
    Zhang K, Cai J, Zhu J. 2006. North China and South China collision: Insights from analogue modeling. Journal of Geodynamics, 42(1-3): 38~51.
    Zhang L, Zheng Y, Chen Y. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems. Journal of Asian Earth Sciences, 49(SI): 69~79.
    Zhao Li, Chen Gen, Dong Yanlong, Ying Xing. 2017. C-O and S isotopic compositions of the Duocaidima Pb-Zn deposits in the Yushuarea, Qinghai Province and their metallogenic materials sources analysis. Acta Geologica Sinica, 91(6): 1259~1268 (in Chinese with English abstract).
    Zhao Yan, Lv Junchao, Zhang Peng, Zhang Debao, Shen Xin, Bi Zhongwei. 2018. Characteristics ofore-forming fluids in the De'rbur Pb-Zn-Ag deposit in the NW Great Hinggan Mountains and its significance. Acta Geologica Sinica, 92(1): 142~153 (in Chinese with English abstract).
    Zheng M, Wang X. 1991. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan, China. Economic Geology, 86(4): 831~846.
    Zheng Yongfei, Xu Baolong, Zhou Gentao. 2000. Geochemistry research of stable isotope in mineral. Earth Science Frontiers, 7(2): 299~320 (in Chinese with English abstract).
    Zhou C, Wei C, Guo J, Li C. 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constraints. Economic Geology, 96(3): 583~598.
    Zhou Jianping, Xu Keqin, Hua Renmin, Zhao Yiying. 1997. The genesis of tin polymetallic deposit in southeast Yunnan. Yunnan Geology, 16(4): 309~349 (in Chinese with English abstract).
    Zhou Jiaxi, Huang Zhilong, Zhou Guofu, Jin Zhongguo, Li Xiaobiao, Ding Wei, Gu Jing. 2010. Sources of the ore metals of the Tianqiao Pb-Zn deposit in northwestern Guizhou Province: constraints form S, Pb isotope and REE geochemistry. Geological Review, 56(4): 513~524 (in Chinese with English abstract).
    Zhou Weijia, Chen Fengyan, Tan Zhaobo, Li Weizhong. 2010. Ore controlling factors of Huangtian lead and zinc deposit in Jianshui, Yunnan. Yunnan Geology, 29(1): 41~44 (in Chinese with English abstract).
    Zhou Yun, Duan Qifa, Chen Yuchuan, Tang Juxing, Cao Liang, Peng Sanguo, Gan Jingmu. 2016. C, O, H, S, Pb and Sr isotope constraints on the metals sources of Huayuan Pb-Zn deposits in western Hunan. Acta Geologica Sinica, 90(10): 2786~2802 (in Chinese with English abstract).
    Zhou Zhenhua, Che Hewei, Ouyang Hegen, Ma Xinghua. 2017. Mineralization mechanism of the Bainaimiao Cu-Au-Mo deposit in Inner Mongolia: evidence from fluid inclusions and He-Ar isotopes. Acta Geologica Sinica, 91(3): 542~560 (in Chinese with English abstract).
    Zhu B, Hu Y, Zhang Z, Cui X, Dai T, Chen G, Peng J, Sun Y, Liu D, Chang X. 2007. Geochemistry and geochronology of native copper mineralization related to the Emeishan flood basalts, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 366~380.
    Zhu Bingquan, Chang XiangYang, Qiu Huaning, Wang Jianghai, Deng Shangxian. 2001. Research on the formation and metamorphism of the Precambrian basement in Yunnan and the chronology of mineralization. Progress in Precambrian Research, 24(2): 75~82 (in Chinese with English abstract).
    Zhu Bingquan. 1998. Theory and Application of Isotope Systems in Earth Sciences: on the Evolution of Chinese Continental Crust. Beijing: Science Press, 1~330 (in Chinese with English abstract).
    Zhu Xingyou, Zhen Shiming, Cheng Xiyin, Yuan Guiqiang, Yang Zhuanhan, Han Ying, Wang Yanli. 2017. The sulfur-lead isotope geochemistry of MVT Pb-Zn deposits in Devonian system in South China. Acta Geologica Sinica, 91(1): 213~231(in Chinese with English abstract).
    Zou Ri, Zhu Bingquan, Sun Dazhong, Chang Xiangyang. 1997. Chronology of the evolution and mineralization of the red river metallogenic belt. Geochemistry, 26 (2): 51~61 (in Chinese with English abstract).
    参考文献陈好寿. 1983. 我国层控多金属矿床的铅、硫同位素研究. 矿床地质,2(3): 79~87.
    陈衍景. 2010. 初论浅成作用和热液矿床成因分类. 地学前缘,17(2): 27~34.
    陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085~2108.
    陈衍景,张莉. 2008. 含硫化物脉状矿床成矿流体的中阶段δD亏损:实例与原因. 地球化学,(4): 353~360.
    崔银亮. 2007. 云南省金平县龙脖河铜矿火山成矿作用及综合信息成矿预测. 昆明理工大学博士学位论文, 1~380.
    丁辉,葛文胜,董连慧,邓刚,贾红旭,张佳儒,陈疆,元强. 2018. 新疆东准噶尔绿源金矿床成因研究:流体包裹体及氢、氧同位素制约. 地质学报,92(4): 787~803.
    付燕刚,胡古月,唐菊兴,刘秋平,王豪. 2017. 西藏斯弄多低硫化型浅成低温热液Ag-Pb-Zn矿床:Si-H-O同位素的示踪应用. 地质学报,91(4): 836~848.
    高建国,秦德先. 1995. 滇中碳酸盐岩区铅锌多金属矿床元素地球化学特征及矿源分析. 云南地质,14(2): 119~130.
    黄智龙,陈进,韩润生,李文博,刘丛强,张振亮,马德云,高德荣,杨海林. 2004. 云南会泽超大型铅锌矿床地球化学及成因: 兼论峨眉山玄武岩与铅锌成矿的关系. 北京: 地质出版社,1~154.
    李登峰,张莉,郑义. 2013. 新疆阿尔泰塔拉特铁铅锌矿床流体包裹体研究及矿床成因. 岩石学报,29(1): 178~190.
    李国武,杨光斌,杨学广. 1998. 云南建水荒田-虾洞火山岩型银多金属矿带的硫、铅同位素特征及其地质意义. 地质地球化学,57(4): 21~26.
    李连举,刘洪滔,刘继顺. 1999. 滇东北铅、锌、银矿床矿源层问题探讨. 有色金属矿产与勘查,8(6): 333~339.
    李文博,黄智龙,张冠. 2006. 云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约. 岩石学报,22(10): 2567~2580.
    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平. 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义. 矿床地质,23(1): 1~10.
    刘建明,刘家军. 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式. 矿物学报,17(4): 448~456.
    柳贺昌,林文达. 1999. 滇东北铅锌银矿床规律研究. 昆明: 云南大学出版社,1~131.
    卢焕章. 2004. 流体包裹体. 北京: 科学出版社, 1~487.
    路睿,缪柏虎,徐兆文,陆建军,王汝成,左昌虎,屈金宝,赵增霞. 2017. 湖南祁东清水塘铅锌矿床成矿物质来源同位素示踪. 地质学报,91(6): 1285~1298.
    罗君烈. 1995a. 云南矿床的成矿系列. 云南地质,14(4): 251~262.
    罗君烈. 1995b. 云南矿床的区域成矿模式. 云南地质,14(4): 263~275.
    马振东. 1986. 论铅同位素的地质指示作用. 地球科学,11(4): 437~443.
    毛景文,赫英,丁悌平. 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据. 矿床地质,21(2): 121~128.
    秦德先. 1993. 滇中碳酸盐岩中铅锌矿床的地质特征及其成因研究. 矿产与地质,33(7): 14~22.
    秦德先,孟清. 1994. 滇中铅锌矿床地球化学与成因研究. 地质科学,29(1): 29~40.
    任顺利,李延河,曾普胜,邱文龙,范昌福,胡古月. 2018. 膏盐层在云南会泽和毛坪铅锌矿成矿中的作用:硫同位素证据. 地质学报,92(5): 1041~1055.
    舒培华,杨俊,张艳韬. 2012. 建水虾洞铅锌银多金属矿床成因新解. 云南地质,31(4): 453~455.
    唐一昂,赖健清,杨牧,梅嘉靖,刘启,吴剑,谌后成,郭兰萱,胡理芳,和秋姣. 2017. 广东韶关市一六钨矿床流体包裹体特征及成矿作用. 地质学报,91(10): 2240~2255.
    吴建忠,余红平. 2011. 滇东铅锌多金属矿成矿过程探讨. 地质与勘探,47(5): 755~764.
    吴开兴,胡瑞忠,毕献武,彭建堂,唐群力. 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学,30(3): 73~81.
    许东,蒋成兴,王建飞. 2009. 云南石屏大冷山-建水虾洞铅锌银矿找矿远景. 云南地质,28(3): 243~249.
    张德会. 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展,12(6): 49~55.
    张长青. 2008. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型. 北京: 中国地质科学院,1~177.
    赵利,陈根,董彦龙,尹行. 2017. 青海玉树多彩地玛铅锌矿C-O、S同位素组成及成矿物质来源分析. 地质学报,91(6): 1259~1268.
    赵岩,吕骏超,张朋,张德宝,沈鑫,毕中伟. 2018. 大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义. 地质学报,92(1): 142~153.
    郑永飞,徐宝龙,周根陶. 2000. 矿物稳定同位素地球化学研究. 地学前缘,7(2): 299~320.
    周家喜,黄智龙,周国富,金中国,李晓彪,丁伟,谷静. 2010. 黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约. 地质论评,56(4): 513~524.
    周建平,徐克勤,华仁民,赵懿英. 1997. 滇东南锡多金属矿床成因商榷. 云南地质,16(4): 309~349.
    周伟家,陈凤艳,谭兆波,李维忠. 2010. 云南建水荒田铅锌矿控矿因素. 云南地质,29(1): 41~44.
    周云,段其发,陈毓川,唐菊兴,曹亮,彭三国,甘金木. 2016. 湘西花垣铅锌矿田成矿物质来源的C、O、H、S、Pb、Sr同位素制约. 地质学报,90(10): 2786~2802.
    周振华,车合伟,欧阳荷根,马星华. 2017. 内蒙古白乃庙铜-金-钼矿床成矿机制——来自流体包裹体和He-Ar同位素的证据. 地质学报,91(3): 542~560.
    朱炳泉,常向阳,邱华宁,王江海,邓尚贤. 2001. 云南前寒武纪基底形成与变质时代及其成矿作用年代学研究. 前寒武纪研究进展,24(2): 75~82.
    朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京:科学出版社,1~330.
    祝新友,甄世民,程细音,原桂强,杨汉壮,韩英,王艳丽. 2017. 华南地区泥盆系MVT铅锌矿床S、Pb同位素特征. 地质学报,91(1): 213~231.
    邹日,朱炳泉,孙大中,常向阳. 1997. 红河成矿带壳幔演化与成矿作用的年代学研究. 地球化学,26(2): 51~61.
    ? 云南省地质局第二区域地质测量大队. 1976. 区域地质调查报告矿产部分(建水幅、元阳幅).
    ? 云南省红河州中科矿业有限责任公司. 2010. 云南省建水县官厅、苏租整装勘查官厅勘查区铅锌矿勘查总体设计及2010年工作安排. 内部资料.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700