成都秋季大气污染过程VOCs特征及SOA生成潜势
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and forming potential of secondary organic aerosols of volatile organic compounds during an air pollution episode in autumn Chengdu
  • 作者:何丽 ; 罗萌萌 ; 潘巍 ; 韩丽 ; 程琰 ; 陈军辉
  • 英文作者:HE Li;LUO Meng-meng;PAN Wei;HAN Li;CHENG Yan;CHEN Jun-hui;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University;Sichuan Academy of Environmental Sciences;
  • 关键词:挥发性有机物 ; 污染特征 ; 日变化 ; 二次有机气溶胶
  • 英文关键词:volatile organic compounds(VOCs);;pollution characteristics;;diurnal variation;;secondary organic aerosol(SOA)
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:西南交通大学地球科学与环境工程学院;四川省环境保护科学研究院;
  • 出版日期:2018-08-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:四川省挥发性有机物全口径摸底调查工作(四川省环境保护专项课题)
  • 语种:中文;
  • 页:ZGHJ201808007
  • 页数:6
  • CN:08
  • ISSN:11-2201/X
  • 分类号:42-47
摘要
利用在线气相色谱-质谱(GC-FID/MS)监测系统,对成都市城区秋季典型大气污染期间环境空气中的77种挥发性有机物(VOCs)进行连续监测,分析了污染前期、污染中期、污染后期VOCs的污染特征、日变化规律.结果表明,成都市城区典型污染前期VOCs体积分数为38.9×10~(-9);污染中期VOCs体积分数迅速增加,比污染前期高3.7倍,达到143.4×10~(-9),污染后期VOCs体积分数为35.7×10~(-9).污染前期VOCs日变化不明显,污染中期、后期VOCs日变化呈双峰性,分别出现在每天车流量高峰时段.此外,利用气溶胶生成系数(FAC)评估了不同污染阶段VOCs对二次有机气溶胶(SOA)的生成潜势,污染前期、污染中期、污染后期SOA浓度值分别为1.1,3.1,1.5μg/m~3,芳香烃是SOA的主要前体物.
        The pollution characteristics and diurnal variation of 77 ambient volatile organic compounds(VOCs) were studied by using online gas chromatography mass spectrometry detection systems(GC-FID/MS) during a typical air pollution episode from Oct. 28 th to Nov. 9 th, 2016 in Chengdu city. The results showed that the averaged concentration of VOCs dramatically increased from 38.9×10~(-9) before the episode to 143.4×10~(-9) in the episode. After the episode, the averaged concentration of VOCs was 35.7×10~(-9). There was no obvious bimodal distribution of VOCs in the pre-pollution period, afterwards the diurnal variation curve of VOCs concentration had a bimodal characteristic, with the two peaks appearing in the rush hours with heavy traffic. The potential formation of secondary organic aerosols(SOA) estimated by fractional aerosol coefficients(FAC) and the SOA concentration values in various stages were 1.1μg/m~3(before the episode)、3.1μg/m~3(in the episode) and 1.5μg/m~3(after the episode), respectively. Alkanes were found to be the main contributors to the SOA formations.
引文
[1]Shi Y C.Frog Haze Production Mechanism&Treatment Strategy in China[J].Shaanxi Electric Power,2013,41(4):1-4.
    [2]Wang X P,Mauzerall D L.Characterizing distributions of surface ozone and its impact on grain production in China,Japan and South Korea:1990 and 2020[J].Atmospheric Environment,2004,38(26):4383-4402.
    [3]Wei W,WANG S X,HAO J M,et al.Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China,2005-2020[J].Frontiers of Environmental Science&Engineering,2014,8(1):27-41.
    [4]Klimont Z,Streets D G,Gupta S,et al.Anthropogenic emissions of non-methane volatile organic compounds in China[J].Atmospheric Environment,2002,36(8):1309-1322.
    [5]Shao M,Zhang Y,Zeng L,et al.Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J].Journal of Environmental Management,2009,90(1):512-518.
    [6]Yuan B,Hu W W,Shao M,et al.VOC emissions,evolutions and contributions to SOA formation at a receptor site in Eastern China[J].Atmospheric Chemistry&Physics Discussions,2013,13(17):8815-8832.
    [7]Atkinson R.Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12-14):2063-2101.
    [8]周裕敏,郝郑平,王海林.北京城乡结合地空气中挥发性有机物健康风险评价[J].环境科学,2011,32(12):3566-3570.
    [9]USEPA(United States Environmental Protection Agency).Carcinogenic effects of benzene:anupdate[R].Washington:Prepared by the National Center for Environmental Health,Office of Research and Development,2002.
    [10]吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的估算[J].环境科学,2009,30(4):969-975.
    [11]胡春芳,田媛,李科.北京市春季不同雾霾天挥发性有机物特征研究[J].广东化工,2017,44(21):127-128.
    [12]刘奇琛,黄婧,郭新彪.北京市大气挥发性有机物(VOCs)的污染特征及来源[J].生态毒理学报,2017,12,(3):49-61.
    [13]于艳,王秀艳,杨文.天津市机动车二次有机气溶胶生成潜势的估算[J].中国环境科学,2015,35(2):381-386.
    [14]王扶潘,朱乔,冯凝,等.深圳大气中VOCs的二次有机气溶胶生成潜势[J].中国环境科学,2014,34(10):2449-2457.
    [15]杨笑笑,汤莉莉,胡丙鑫,等.南京城区夏季大气VOCs的来源及对SOA的生成研究——以亚青和青奥期间为例[J].中国环境科学,2016,36(10):2896-2902.
    [16]林旭,朱彬,安俊琳,等.南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J].中国环境科学,2015,35(4):976-986.
    [17]王倩,陈长虹,王红丽,等.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J].环境科学,2013,34(2):424-433.
    [18]刘丹,解强,张鑫,等.北京冬季雾霾频发期VOCs源解析及健康风险评价[J].环境科学,2016,37(10):3693-3701.
    [19]王红丽.上海市光化学污染期间挥发性有机物的组成特征及其对臭氧生成的影响研究[J].环境科学学报,2015,35(6):1603-1611.
    [20]邹宇,邓雪娇,李菲,等.广州番禺大气成分站复合污染过程VOCs对O3与SOA的生成潜势[J].环境科学,2017,38(6):2246-2255.
    [21]崔虎雄.上海市春季臭氧和二次有机气溶胶生成潜势的估算[J].环境科学,2013,34(12):4529-4534.
    [22]Grosjean D,Seinfeld J H.Parameterization of the formation potential of secondary organic aerosol[J].Atmospheric Environment,1989,23(8):1733-1747.
    [23]Grosjean D.In situ organic aerosol formation during a smog episode:Estimated production and chemical functionality[J].Atmospheric Environment,1992,26(6):953-963.
    [24]李用宇,朱彬,安俊琳,等.南京北郊秋季VOCs及其光化学特征观测研究[J].环境科学,2013,34(8):2933-2942.
    [25]崔虎雄,吴迓名,高松,等.上海城区典型污染过程VOCs特征及臭氧潜势分析[J].环境科学,2011,32(12):3537-3542.
    [26]王琴,刘保献,张大伟,等.北京市大气VOCs的时空分布特征及化学反应活性[J].中国环境科学,2017,37(10):3636-3646.
    [27]解鑫,邵敏,刘莹,等.大气挥发性有机物的日变化特征及在臭氧生成中的作用——以广州夏季为例[J].环境科学学报,2009,29(1):54-62.
    [28]刘莹.北京和珠江三角洲大气挥发性有机物活性和来源研究[D].北京:北京大学,2007.
    [29]Nelson P F,Quigley S M.The hydrocarbon composition of exhaust emitted from gasoline fuelled vehicles[J].Atmospheric Environment,1984,18(1):79-87.
    [30]刘全,王跃思,吴方堃,等.长沙大气中VOCs研究[J].环境科学,2011,32(12):3543-3548.
    [31]Seinfeld J H.Urban air pollution:state of the science[J].Science,1989,243(4892):745-752.
    [32]刘建,吴兑,范绍佳,等.前体物与气象因子对珠江三角洲臭氧污染的影响[J].中国环境科学,2017,37(3):813-820.
    [33]黄俊,廖碧婷,吴兑,等.广州近地面臭氧浓度特征及气象影响分析[J].环境科学学报,2018,38(01):23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700