菠萝AcSAP转录因子对非生物胁迫和生物胁迫的应答响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of SAP Transcription Factor to Abiotic and Biotic Stress in Ananas comosus
  • 作者:夏杨 ; 周佳炜 ; 苏初连 ; 叶子 ; 蒲金基 ; 陈华蕊 ; 张贺
  • 英文作者:Xia Yang;Zhou Jiawei;Su Chulian;Ye Zi;Pu Jinji;Chen Huarui;Zhang He;Institute of Tropical Agriculture and Forestry, Hainan University;College of Engineering, Nanjing Agricultural University;Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences;Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences;
  • 关键词:SAP转录因子 ; 非生物胁迫 ; 生物胁迫 ; WD40重复区
  • 英文关键词:SAP transcription factor;;Abiotic stress;;Biotic stress;;WD40 repeat
  • 中文刊名:FZZW
  • 英文刊名:Molecular Plant Breeding
  • 机构:海南大学热带农林学院;南京农业大学工学院;中国热带农业科学院环境与植物保护研究所;中国热带农业科学院热带作物品种资源研究所;
  • 出版日期:2018-09-05 11:10
  • 出版单位:分子植物育种
  • 年:2019
  • 期:v.17
  • 基金:中国热带农业科学院基本科研业务费专项资金(1630032017041)资助
  • 语种:中文;
  • 页:FZZW201903007
  • 页数:7
  • CN:03
  • ISSN:46-1068/S
  • 分类号:57-63
摘要
STERILE APETALA (SAP)是调节花序、花和胚珠发育,调控分生组织细胞的增殖和器官大小的多功能基因。本研究利用生物信息学的方法对菠萝SAP转录因子进行序列分析,并通过qRT-PCR技术研究了非生物胁迫和生物胁迫对菠萝SAP基因表达的影响。结果表明,菠萝SAP蛋白为稳定疏水酸性蛋白且含有3个WD40重复区域,蛋白质二级结构显示,菠萝SAP蛋白主要结构元件为延伸链和无规则卷曲;qRT-PCR分析显示,逆境胁迫下,AcSAP的表达量与对照差异显著。在H2O2、NaCl、SA、ABA、Eth、低温(4℃)和病菌侵染胁迫下,AcSAP的表达量显著升高。研究表明,逆境胁迫能使AcSAP基因的表达受到影响,进而直接或间接影响植物生长发育,为今后菠萝的抗逆研究和分子育种提供了理论依据。
        STERILE APETALA(SAP) is a multifunctional gene that can regulate inflorescence, flower, and ovule development. It can also control organ size by promoting meristematic cell proliferation. In this study, sequences of SAP transcription factor in pineapple was analyzed by bioinformatics software. qRT-PCR was used to analyze the expression profile of SAP transcription factor in pineapple seedlings under abiotic and biotic stress. The results showed that: AcSAP was a stable hydrophobic acidic protein and contained three WD40 repeat regions. Secondary structure prediction showed that the main structural elements of AcSAP protein were extended strand and random coil. q RT-PCR analysis showed that under various of stress conditions, the expression of AcSAP was significantly different from the control. The expression of AcSAP was significantly increased under the stress of H2 O2, NaCl,SA, ABA, Eth, low temperature(4℃) and pathogen infection. Studies have shown that abiotic and biotic stress can affect the expression of AcSAP gene, which directly or indirectly affects plant growth and development, and provides a theoretical basis for the future research on stress resistance and molecular breeding of pineapple.
引文
Byzova M.V.,Franken J.,Aarts M.G.,De A.J.,Engler G.,Mariani C.,Van L.C.M.M.,and Angenent G.C.,1999,Arabidopsis sterile apetala,a multifunctional gene regulating inflorescence,flower,and ovule development,Genes Dev.,13(8)1002-1014
    Chen R.G.,Gong Z.H.,Lu M.H.,Li D.W.,and Huang W.,2010Research advance of the transcription factors networks related to plant adverse environmental stress,Nongye Shengwu Jishu Xuebao(Journal of Agricultural Biotechnology),18(1)126-134(陈儒钢,巩振辉,逯明辉,李大伟,黄炜,2010,植物抗逆反应中的转录因子网络研究进展,农业生物技术学报,18(1):126-134)
    Henderson I.R.,Liu F.,Drea S.,Simpson G.G.,and Dean C.2005,An allelic series reveals essential roles for FY in plan development in addition to flowering-time control,Development,132(16):3597-3607
    Hua J.J.,2015,Cloning and expression analysis of three WD40related genes of Narcissus tazetta var.chinensis cv.HuanghuaⅡ,Thesis for M.S.,Fujian Agriculture and Forestry University,Supervisor:Chen X.J.,pp.32-33(华静静,2015,‘黄花水仙2号’三个WD40相关基因克隆及表达分析,硕士学位论文,福建农林大学,导师:陈晓静,pp.32-33)
    Jin J.,Tian F.,Yang D.C.,Meng Y.Q.,Kong L.,Luo J.C.,and Gao G.,2017,PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants,Nucleic Acids Res.,45(D):1040-1045
    Li L.,Luo X.,Xu L.,and Li X.G.,2013,Cloning and expression analysis of FVE homologous gene from Aechmea fasciata Jiyinzuxue Yu Yingyong Shengwuxue(Genomics and Applied Biology),32(5):621-626(李丽,罗轩,徐立,李新国2013,粉菠萝FVE同源基因的克隆及表达分析,基因组学与应用生物学,32(5):621-626)
    Li N.,Liu Z.P.,Wang Z.B.,Ru L.C.,Gonzalez N.,Baekelandt A.Pauwels L.,Goossens A.,Xu R.,Zhu Z.G.,InzéD.,and LY.H.,2018,STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana,PLoS Genet.,14(2):e1007218
    Li Y.L.,Zhang X.M.,Chen X.J.,and Fu Y.F.,2012,Response of the Arabidopsis ft-1 mutant to abiotic stresses,Fenzi Zhiwu Yuzhong(Molecular Plant Breeding),10(3):338-344(李艳玲,张晓玫,陈新建,傅永福,2012,拟南芥ft-1突变体对非生物胁迫的响应,分子植物育种,10(3):338-344)
    Livak K.J.,and Schmittgen T.D.,2001,Analysis of relative gene expression data using real-time quantitative PCR and the2-ΔΔCTmethod,Methods,25(4):402-408
    Nian Y.W.,Chen Z.,Hu F.C.,Fan H.Y.,He F.,Chen H.P.,and Zhang Z.L.,2018,Cloning and expression profile of LEAFYgene in Ananas comosus,Fenzi Zhiwu Yuzhong(Molecular Plant Breeding),16(7):2107-2115(年宇薇,陈哲,胡福初范鸿雁,何凡,陈惠萍,张治礼,2018,菠萝LEAFY基因克隆与表达模式研究,分子植物育种,16(7):2107-2115)
    Onate-Sánchez L.,and Singh K.B.,2002,Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection,Plant Physiol.,128(4):1313-1322
    Singh K.B.,Foley R.C.,and Onate-Sánchez L.,2002,Transcription factors in plant defense and stress responses,Curr.Opin.Plant Biol.,5(5):430-436
    Smith T.F.,Gaitatzes C.,Saxena K.,and Neer E.J.,1999,The WD repeat:a common architecture for diverse functions,Trends Biochem.Sci.,24(5):181-185
    Valliyodan B.,and Nguyen H.T.,2006,Understanding regulatory networks and engineering for enhanced drought tolerance in plants,Curr.Opin.Plant Biol.,9(2):189-195
    Wang B.,and Cheng X.G.,2017,Physiological responses and regulatory pathways of transcription factors in plants under drought,high-salt,and low temperature stresses,Zhiwu Yingyang Yu Feiliao Xuebao(Journal of Plant Nutrition and Fertilizers),23(6):1565-1574(王冰,程宪国,2017,干旱,高盐及低温胁迫下植物生理及转录因子的应答调控,植物营养与肥料学报,23(6):1565-1574)
    Wang Z.B.,Li N.,Jiang S.,Gonzalez N.,Huang X.H.,Wang Y.C.,InzéD.,and Li Y.H.,2016,SCFSAPcontrols organ size by targeting PPD proteins for degradation in Arabidopsis thaliana,Nature Communications,7:11192
    Yang K.,2016,A preliminary study on low temperature germination and flowering in Gagea nigra L.Z.Chue,Thesis for M.S.,Xinjiang Normal University,Supervisor:Zhu C.Q.,pp.14(杨坤,2016,黑鳞顶冰花低温萌发及开花初探,硕士学位论文,新疆师范大学,导师:祝长青,pp.14)
    Yang S.Z.,Gao L.Y.,Sun X.C.,Li H.R.,Deng H.,and Liu Y.S.,2015,Over-expressing SlWD6 gene to improve drought and salt tolerance of tomato,Yingyong Yu Huanjing Shengwu Xuebao(Chinese Journal of Applied and Environmental Biology),21(3):413-420(杨述章,高兰阳,孙晓春,李会容,邓恒,刘永胜,2015,过量表达SlWD6基因增强番茄抗旱和耐盐功能,应用与环境生物学报,21(3):413-420)
    Zhang H.,Wei Y.X.,Qi Y.X.,Lu Z.T.,Liu X.M.,Xie Y.X.,and Pu J.J.,2015,Effects of temperature and humidity on conidium germination and appressorium formation of Colletotrichum gloeosporioides,Zhongguo Zhibao Daokan(China Plant Protection),35(1):10-13(张贺,韦运谢,漆艳香,陆卓婷,刘晓妹,谢艺贤,蒲金基,2015,温湿度对芒果炭疽病病原菌分生孢子萌发及附着胞形成的影响,中国植保导刊,35(1):10-13)
    Zhang M.,Zhu J.X.,Wang L.,and Xu M.Y.,2016,Progress of stress-induced flowering in plants,Shengwu Gongcheng Xuebao(Chinese Journal of Biotechnology),32(10):1301-1308(张敏,朱佳旭,王磊,徐妙云,2016,逆境诱导植物开花的研究进展,生物工程学报,32(10):1301-1308)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700