环氧氯丙烷改性纤维素溶液的流变与减阻性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Rheology and Drag Reducing Performance of Epoxy Chloropropane Modified Cellulose Solution
  • 作者:朱仪玫 ; 方波 ; 卢拥军 ; 邱晓惠
  • 英文作者:ZHU Yimei;FANG Bo;LU Yongjun;QIU Xiaohui;Research Institute of Chemical Engineering, East China University of Science and Technology;Langfang Branch of PetroChina Research Institution of Petroleum Exploration and Development;
  • 关键词:羧甲基羟乙基纤维素 ; 环氧氯丙烷 ; 减阻性能 ; 流变性能
  • 英文关键词:Carboxymethyl hydroxyethyl cellulose;;Epoxychloropropane;;Modification;;Rheology
  • 中文刊名:ZJYW
  • 英文刊名:Drilling Fluid & Completion Fluid
  • 机构:华东理工大学化学工程研究所;中国石油勘探开发研究院廊坊分院;
  • 出版日期:2016-11-30
  • 出版单位:钻井液与完井液
  • 年:2016
  • 期:v.33;No.184
  • 基金:国家高技术研究发展计划(863计划)课题“致密砂岩气藏低伤害压裂液体系研究与应用”(2013AA064801);; 中国石油天然气集团公司科学研究与技术开发项目“井筒工作液基础理论关键技术研究”(2014A-4212);; 国家级大学生创新训练计划(X15012)
  • 语种:中文;
  • 页:ZJYW201606018
  • 页数:6
  • CN:06
  • ISSN:13-1118/TE
  • 分类号:98-103
摘要
为提高羧甲基羟乙基纤维素(CMHEC)溶液的黏弹性,拓宽其应用范围,以环氧氯丙烷(EPIC)与CMHEC进行反应,首次制备出水溶性改性羧甲基羟乙基纤维素EPIC-CMHEC。研究了EPIC-CMHEC和CMHEC水溶液的流变特性(流动曲线、黏弹性、本构方程、触变性等)以及减阻性能。结果表明,EPIC-CMHEC溶液黏度显著提高,其3 g/L水溶液黏度为56.6 m Pa·s,比3 g/L CMHEC水溶液的黏度(18.3 m Pa·s)提高了2.1倍,且弹性也优于CMHEC溶液。在170 s-1剪切下,温度从20℃升至80℃后,0.3%EPIC-CMHEC溶液的黏度约为19 m Pa·s,仍高于25℃时0.3%的CMHEC溶液的黏度;EPIC-CMHEC溶液的减阻性能也明显提高,0.10%的EPIC-CMHEC和CMHEC溶液最大减阻率分别为72.70%和68.41%。EPIC-CMHEC和CMHEC溶液的流动曲线可用Cross本构方程进行表征,EPIC-CMHEC可望用于油气田开采和减阻领域。
        To improve the viscoelasticity of carboxymethyl hydroxyethyl cellulose(CMHEC) solution to widen its field of application, a water soluble EPIC-CMHEC has been developed by reacting epoxychloropropane(EPIC) with CMHEC. EPIC-CMHEC and CMHEC water solutions were studied for their rheology(flow curve, viscoelasticity, constitutive equation, and thixotropy etc.) and drag reducing performance. The study has shown that compared with that of the CMHEC solution, the viscosity of the EPIC-CMHEC solution was notably increased. Water solution of 3 g/L EPIC-CMHEC had viscosity of 56.6 m Pa s, 2.1 times of the viscosity of a 3 g/L CMHEC solution(18.3 m Pa s), and the elasticity of the EPIC-CMHEC solution was better than that of the CMHEC solution. Sheared at 170 s-1, when temperature was increased from 20 ℃ to 80 ℃, the viscosity of 0.3% EPIC-CMHEC solution was 19 m Pa s, still higher than the viscosity of a 0.3% CMHEC solution at 25 ℃. EPIC-CMHEC solution had better drag reducing performance. The maximum percentages of drag reduction of 0.10% EPIC-CMHEC solution and CMHEC solution were 72.70% and 68.41%, respectively. The flow curves of the EPIC-CMHEC solution and the CMHEC solution can be expressed with cross constitutive equation. EPIC-CMHEC is expected to find its use in oil/gas development and where drag reducing is required.
引文
[1]金雷平.耐高温黏弹性表面活性剂压裂液体系及流变学研究[D].华东理工大学,2015.JIN Leiping.Study on high temperature viscoelastic surfactant fracturing fluid and its rheological properties[D].East China University of Science and Technology,2015.
    [2]明华,舒玉华,卢拥军,等.一种速溶无残渣纤维素压裂液[J].油田化学,2014,31(4):492-496.MING Hua,SHU Yuhua,LU Yongjun,et al.A cellulose fracturing fluid with instant solution and nonresidue[J].Oilfield Chemistry,2014,31(4):492-496.
    [3]王煦,杨永钊,蒋尔梁,等.压裂液用纤维类物质的研究进展[J].西南石油大学学报(自然科学版),2010,32(3):141-144.WANG Xu,YANG Yongzhao,JIANG Erliang,et al.Research progress of fibrous substance used in fracturing fluid[J].Journal of Southwest Petroleum University(Science&Technology Edition),2010,32(3):141-144.
    [4]GUO J,MA J,ZHAO Z H,et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science and Engineering,2015,23(21):232-244.
    [5]MA M,FANG B,Lu Y J,et al.Intrinsic rheokinetics on gelation process of hydrophobic amphoteric cellulose[J].Journal of Dispersion Science and Technology,2015,37(8):1076-1082.
    [6]王丽伟,卢拥军,刘玉婷,等.羟乙基羧甲基纤维素与金属离子交联作用机理[J].科学技术与工程,2015,15(33):166-169.WANG Liwei,LU Yongjun,LIU Yuling,et al.Crosslinking mechanism of hydroxyethyl carboxymethyl cellulose and metal lons[J].Science Technology and Engineering,2015,15(33):166-169.
    [7]ZHAO Z H,MA J,GUO J C,et al.Experimental investigation of rheological properties of fiber-laden crosslinked fracturing fluids[J].Journal of Natural Gas Science and Engineering,2016,32(2):28-34.
    [8]罗成成,王晖,陈勇.纤维素的改性及应用研究进展[J].化工进展,2015,34(3):767-773.LUO Chengcheng,WANG Hui,CHEN Yong.Progress in modification of cellulose and application[J].Chemical Industry and Engineering Progress,2015,34(3):767-773.
    [9]鹿保鑫,王喜刚,周睿,等.稻草纤维素醚化改性及其结构表征[J].黑龙江八一农垦大学学报,2010,22(4):71-76.LU Baoxin,WANG Xigang,ZHOU Rui,et al.Etherifying modification and structure characterizations of carboxymethyl cellulose[J].Journal of Heilongjiang Bayi Agricultural University,2010,22(4):71-76.
    [10]段瑶瑶,明华,代东每,等.纤维素压裂液在苏里格气田的应用[J].特种油气藏,2014,21(6):123-125.DUAN Yaoyao,MING Hua,DAI Donghai,et al.Application of cellulose fracturing fluid in sulige gas field[J].Special Oil and Gas Reservoirs,2014,21(6):123-125.
    [11]邵自强,杨斐霏,王文俊,等.羧甲基纤维素的环氧氯丙烷交联改性研究[J].纤维素科学与技术,2007,15(2):26-29.SHAO Ziqiang,YANG Feiwen,WANG Wenjun,et al.Study on CMC crosslinked by 3-chloro-1,2-epoxypropane[J].Journal Cellulose Science and Technology,2007,15(2):26-29.
    [12]梁凯,杜予民,李艳,等.三偏磷酸钠交联売聚糖膜的制备及其性能研究[J].分析科学学报,2008,24(2):136-140.LIANG Kai,DU Yumin,LI Yan,et al.The preparation and properties of chitosan films crosslinked by sodium trimetaphosphate[J].Journal of Analytical Science,2008,24(2),136-140.
    [13]刘茹.交联黄原胶的制备及其溶液流变性[D].山东大学,2015.LIU Ru.Synthesis and solution rheology of crosslinked xanthan gum[D].Shandong University,2015.
    [14]李秉正.三偏磷酸钠交联淀粉微球的制备与性能研究[D].中国农业大学,2006.LI Binzheng.Preparation and properties of trisodium trimetaphosphate crosslinked starch microspheres[D].China Agricultural University,2006.
    [15]李芳良,何建华,麻昌爱.三偏磷酸钠制备木薯交联淀粉的研究[J].广西轻工业,2007,23(3):18-19.LI Fangliang,HE Jianhan,MA Changai.Study on sodium trimetaphosphate crosslinked cassava starch[J].Guangxi Journal of Light Industry,2007,23(3):18-19.
    [16]杨婷婷,李海平,侯万国.环氧氯丙烷交联黄原胶溶液的流变及抗温性能[J].高分子材料科学与工程,2015,31(5):39-43.YANG Tingting,LI Haiping,HOU Wangguo.Rheological properties and temperature resistance of epichlorohydrin crosslinked xanthan gum aqueous solutions[J].Polymer Materials Science and Engineering,2015,31(5):39-43.
    [17]袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联売聚糖树脂的制备及性能[J].高分子材料科学与工程,2004,20(1):53-57.YUAN Yanchao,CHEN Binniang,WANG Ruixiang.Studies of properties and preparation of chitosan resin crosslinked by formaldehyde and epichlorohydrin[J].Polymer Materials Science and Engineering,2004,20(1):53-57.
    [18]徐德增,李丹,徐磊.戊二醛交联改性再生纤维素纤维的研究[J].合成纤维工业,2012,35(4):27-29.XU Dezeng,LI Dan,XU Lei.Crosslinking modification of regenerated cellulose fiber by glutaraldehyde[J].China Synthetic Fiber Industry,2012,35(4):27-29.
    [19]王雪娟,唐屹,吴炜誉,等.戊二醛交联胶原蛋白/PVA复合纤维的结构与性能[J].纺织学报,2007,28(11):13-16.WANG Xuejuan,TANG Yi,WU Weiyu,et al.Research on collagen/PVA composite fibers with glutaraldehyde as cross-linker[J].Journal of Textile Research,2007,28(11):13-16.
    [20]HARDING M J,GAINES R C,GESS J M.Method for preparation of cationic cellulose:US,US4505775[P].1985.
    [21]LUO M,JEWELL R A,NEOGI A N.Method for production of cellulose derivatives and the resulting products:US,US 6531593 B1[P].2003.
    [22]卢拥军,方波,房鼎业,等.黏弹性表面活性剂胶束体系及其流变特性[J].油田化学,2003,20(3):291-294.LU Yongjun,FANG Bo,FANG Dingye,et al.Viscoelastic surfactant micelle systems and their rheological properties[J].Oilfield Chemistry,2003,20(3):291-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700