沙漠微生物矿化覆膜及其稳定性的现场试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Field experimental study on stability of bio-mineralization crust in the desert
  • 作者:李驰 ; 王硕 ; 王燕星 ; 高瑜 ; 斯日古楞
  • 英文作者:LI Chi;WANG Shuo;WANG Yan-xing;GAO Yu;BAI Siriguleng;College of Civil Engineering, Inner Mongolia University of Technology;College of Science, Inner Mongolia University of Technology;
  • 关键词:微生物诱导矿化技术 ; 葡萄球菌 ; 长期稳定性 ; 沙漠矿化覆膜 ; 现场试验
  • 英文关键词:microbial induced calcite precipitation(MICP) technology;;Staphylococcus;;long-term stability;;bio-mineralization crust;;field-scale test
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:内蒙古工业大学土木工程学院;内蒙古工业大学理学院;
  • 出版日期:2018-09-04 11:24
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.301
  • 基金:国家自然科学基金(No.51668050);; 内蒙自治区科技计划(No.20140155);; 内蒙自然科学基金(No.2014MS0105)~~
  • 语种:中文;
  • 页:YTLX201904007
  • 页数:8
  • CN:04
  • ISSN:42-1199/O3
  • 分类号:58-65
摘要
将微生物诱导矿化技术应用于原位沙漠覆膜的形成,使得流动沙丘经结皮固定而成为半固定、固定沙丘,从根本上阻断沙尘暴的源头。在内蒙古乌兰布和沙漠腹地选择两个微生物矿化试验区域(TP1和TP3),分别用于两种不同矿化菌种诱导生成碳酸钙覆膜。研究沙漠微生物矿化覆膜的现场试验方法及工艺,对原位矿化覆膜的强度及其在沙漠环境中的长期稳定性进行跟踪检测。采用沙漠土中自行提取的葡萄球菌和传统的巴氏芽孢杆菌两种不同的微生物矿化菌种,通过现场贯入试验检测7、14、28、60、210 d后矿化覆膜沿深度发展的贯入阻力,并将覆膜厚度为2 cm处的平均贯入阻力换算成覆膜层强度,总结覆膜强度随时间的发展变化规律。现场观测结果显示,不同微生物菌种诱导生成的矿化覆膜均在试验的第4天开始形成,到第7天覆膜层具有稳定的强度和厚度,现场检测覆膜的平均厚度为2.0~2.5cm,经自源葡萄球菌诱导生成的矿化覆膜(TP1)的强度是巴氏芽孢杆菌诱导生成的矿化覆膜(TP3)强度的1.05倍。当经历冬春交替后覆膜层强度都有不同程度的降低,明显地TP3较TP1区域表面剥落更为严重,第210天检测TP3的平均厚度为0.7~1.0 cm,覆膜强度较第7天时降低19%,覆膜内碳酸钙含量较第7天检测时降低15%~30%。而TP1在第210天时的强度较第7天时强度降低仅2%。因此,微生物诱导矿化技术可以应用于沙漠原位覆膜的形成,且沙漠自源葡萄球菌经诱导生成的矿化覆膜层具有更好的强度表现和稳定性。
        Microbial induced calcite precipitation(MICP) technology is applied to the formation of in-situ bio-mineralization crust on the surface of desert, which enables floating dune to be semi-fixed and fixed, hinders wind erosion, and fundamentally blocks the source of sandstorm. Two bio-mineralization test plots(TP1 and TP3) were built using two different microbial strains on the Aeolian sand surface in Ulan Buh desert, Inner Mongolia Autonomous Region of China. The field-scale experiment methods and processes were designed to evaluate and analyze the strength of bio-mineralization crust and its long-term stability in the desert environment. Staphylococcus, extracted from local Aeolian sand, and Sporoscarcina pasteurii, a traditional bio-mineralized bacterium, were used to induce the formation of calcium carbonate crystals. Through penetration tests in site, the penetration resistance developed along the depth of bio-mineralization crust was recorded on the 7~(th), 14 ~(th), 28~(th), 60~(th) and 210 th day. The strength of bio-mineralization crust was converted according to the value of average penetration resistance at 2.0 cm of the crust. The variation of strength of bio-mineralization crust with mineralization time was summarized. From visual observation in site, the bio-mineralization crust began to form on the 4~(th) day. The average thickness ranges from 2.0 cm to 2.5 cm on the 7~(th) day, and the strength of bio-mineralization crust induced from Staphylococcus was 1.05 times than that of Sporoscarcina pasteurii. For the bio-mineralization crust TP3 induced from Sporoscarcina pasteurii after freeze-thaw cycles on the 210 th day, the average thickness decreased from 0.7 cm to 1.0 cm, the strength was reduced by 19% and the content of calcium carbonate was reduced by 15%-30% compared with that on the 7~(th) day. However, the strength of bio-mineralization crust TP1 induced from Staphylococcus on the 210~(th) day was reduced only by 2%, which is a little less than that on the 7~(th) day. MICP technology can be applied to the formation of in situ bio-mineralization crust in desert. The bio-mineralization crust developed from Staphylococcus has better strength performance and long-term stability in desert environment than that from Sporoscarcina pasteurii.
引文
[1]DEJONG J T,FRITZGES M B,NüSSLEIN K.Microbially induced cementation to control sand response to undrained shear[J].Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1381-1392.
    [2]KANTZAS A,STEHMEIER L,MARENTETTE D F,et al.A novel method of sand consolidation through bacteriogenic mineral plugging[C]//Annual Technical Meeting.[S.l.]:[s.n.],1992.
    [3]FERRIS F G,STEHMEIER L G,KANTZAS A,et al.Bacteriogenic mineral plugging[J].Journal of Canadian Petroleum Technology,1996,35(8):56-61.
    [4]YANG Z,CHENG X,LI M.Engineering properties of MICP-Bonded sandstones used for historical masonry building restoration[C]//Geo-Frontiers Congress.[S.l.]:[s.l.],2011:4031-4040.
    [5]QIAN C X,WANG R X,CHENG L,et al.Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects[J].Chinese Journal of Chemistry,2010,28(5):847-857.
    [6]DEJONG J T,SOGA K,BANWART S A,et al.Soil engineering in vivo:harnessing natural biogeochemical ystems for sustainable,multi-functional engineering solutions[J].Journal of The Royal Society Interface,2011,8(54):1-15.
    [7]CHU J,IVANOV V,STABNIKOV V,et al.Microbial method for construction of an aquaculture pond in sand[J].Geotechnique,2013,63(10):871-875.
    [8]CHU J,IVANOV V,NAEIMI M,et al.Optimization of calcium-based bioclogging and biocementation of sand[J].Acta Geotechnica,2014,9(2):277-285.
    [9]CHOU C,SEAGREN E A,AYDILEK A H,et al.Biocalcification of sand through ureolysis[J].Journal of Geotechnical and Geoenvironmental Engineering,2011,137(12):1179-1189.
    [10]程晓辉,麻强,杨钻,等.微生物灌浆加固液化砂土地基的动力反应研究[J].岩土工程学报,2013,35(8):1486-1495.CHENG Xiao-hui,MA Qiang,YANG Zuan,et al.Dynamic response of liquefiable sand foundation improved by bio-grouting[J].Journal of Geotechnical Engineering,2013,35(8):1486-1495.
    [11]ZHANG Y,GUO H X,CHENG X H.Role of calcium sources in the strength and microstructure of microbialmortar[J].Construction and Building Material,2015(77):160-167.
    [12]WHIFFIN V S.Microbial Ca CO3 precipitation for the production of biocement[D].Western Australia:Murdoch University,2004.
    [13]WHIFFIN VICTORIA S,VAN PAASSEN LEON A,HARKES MARIEN P.Microbial carbonate precipitation as a soil improvement technique[J].Geomicrobiology Journal,2007,24(5):417-423.
    [14]HARKES M P,VAN PAASSEN L A,BOOSTER J L,et al.Fixation an d distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J].Ecological Engineering,2010,36(2):112-117.
    [15]PAASSEN L A V.Bio-Mediated ground improvement:from laboratory experiment to pilot applications[C]//Geo-Frontiers:Advances in Geotechnical Engineering.Dallas:ASCE,2011:4099-4108.
    [16]PAASSEN L A V,GHOSE R,LINDEN T J M V D,et al.Quantifying bio-mediated ground improvement by ureolysis:a large scale biogrout experiment[J].Journal of Geotechnical&Geoenvironmental Engineering,2010,136(12):1721-1728.
    [17]Al QABANY A,MORTENSEN B,MARTINEZ B,et al.Microbial carbonate precipitation:correlation of S-wave velocity with calcite precipitation[C]//Geo-Frontiers 2011:Advances in Geotechnical Engineering.Dallas:ASCE,2011:3993-4001.
    [18]MARTINEZ B C,DEJONG J T.Bio-mediated soil improvement:load transfer mechanisms at the micro-and macro-scales[C]//Advances in Ground Improvement:Research to Practice in the United States and China.Orlando:ASCE,2009:242-251.
    [19]MONTOYA B M,DEJONG J T,BOULANGER R W,et al.Liquefaction mitigation using microbial induced calcite precipitation[C]//GeoCongress:State of the Art and Practice in Geotechnical Engineering.Oakland:ASCE,2012:1918-1927.
    [20]SMITH R W,FUJITA Y,GINN T R,et al.Final report for DOE Grant No.DE-FG02-07ER64404-Field investigations of microbially facilitated calcite precipitation for immobilization of strontium-90 and other trace metals in the subsurface[R].[S.l.]:Office of Scientific&Technical Information Technical Reports,2012.
    [21]DWORATZEK S M,GOMEZ M G,MARTINEZ B C,et al.Field-scale bio-cementation tests to improve sands[J].Proceedings of the Institution of Civil Engineers Ground Improvement,2014,168(3):206-216.
    [22]LI C,HUANG H,LI L,et al.Geotechnical hazards assessment on wind-eroded desert embankment in Inner Mongolia Autonomous Region,North China[J].Natural Hazards,2015,76(1):235-257.
    [23]LI C,YAO D,LIU S H,et al.Improvement of geomechanical properties of bio-remediated Aeolian sand[J].Geomicrobiology Journal,2018,35(2):132-140.
    [24]李驰,刘世慧,周团结,等.微生物矿化风沙土强度及孔隙特性的试验研究[J].力学与实践,2017,39(2):165-184.LI Chi,LIU Shi-hui,ZHOU Tuan-jie,et al.Strength and porosity properties of MICP-treated aeolian sandy soil[J].Mechanics in Engineering,2017,39(2):165-184.
    [25]LI H J,LI C,ZHOU T J,et al.An improved rotating soak method for MICP-treated fine sand in specimen preparation[J].Geotechnical Testing Journal,2018,41(4):805-814.
    [26]ZHAO Q,LI L,LI C,et al.Factors effecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J].Journal of Materials in Civil Engineering,2014,26(12):04014094.
    [27]上海市基础工程公司.GB 50202―2002建筑地基基础工程施工质量验收规范[S].北京:中国计划出版社,2002.Shanghai Foundation Engineering Group Co.,Ltd.GB50202―2002 Code for acceptance of construction quality of building foundation[S].Beijing:China Planning Press,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700