应用同步辐射X近边吸收谱法研究大气超细颗粒物中氯形态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Chalorine Concentration in Atmospheric Particles by X-Ray Absorption Near Edge Spectrometry
  • 作者:张博 ; 郎春燕 ; 马玲玲 ; 杨国胜 ; 龚仓 ; 郑雷 ; 马陈燕 ; 赵屹东 ; 胡天斗 ; 徐殿斗
  • 英文作者:ZHANG Bo1,2,LANG Chun-Yan1,MA Ling-Ling2,YANG Guo-Sheng2,GONG Cang1,2,ZHENG Lei3, MA Chen-Yan3,ZHAO Yi-Dong3,HU Tian-Dou3,XU Dian-Dou2 1(Chengdu University of Technology,Department of Applied Chemistry,Chengdu 610059,China) 2(Institute of High Energy Physics,Application of Nuclear Technology Research Center, Key Laboratory of Nuclear analysis Techniques,Beijing 100049,China) 3(Institute of High Energy Physics,Application of Nuclear Technology Research Center, Multi-Discipline Research Center,Beijing 100049,China)
  • 关键词:氯形态 ; 有机氯污染物 ; X射线近边吸收光谱法 ; 大气颗粒物
  • 英文关键词:Chlorine;Organic chloride pollutants;X-ray absorption near edge spectrometry;Atmospheric particle
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:成都理工大学材料与化学化工学院;中国科学院高能物理研究所核技术应用研究中心核分析重点实验室;中国科学院高能物理研究所多学科研究中心;
  • 出版日期:2013-04-15
  • 出版单位:分析化学
  • 年:2013
  • 期:v.41
  • 基金:国家自然科学基金(Nos.10905061,11075171,11275216)资助
  • 语种:中文;
  • 页:FXHX201304022
  • 页数:5
  • CN:04
  • ISSN:22-1125/O6
  • 分类号:123-127
摘要
建立了X射线近边吸收光谱法(1sXANES)测定大气颗粒物中无机氯和有机氯形态及含量的分析方法及质量控制体系。在储存环能量为1.5 GeV和光子能量为2.82 keV条件下,利用束流强度在300~150 mA的同步辐射光激发分析无机氯、链烃代有机氯和芳香烃代有机氯标准样品以及≤0.2μm的大气颗粒物样品。通过对标准品谱图的拟合计算,得到该方法无机氯、链烃代有机氯和芳香烃代有机氯最低检出限,分别为5.4,8.7和1.7μg/g。对已知无机氯和有机氯浓度的试样检出率均达到或接近95%,重复测定3-氯丙酸标准品(n=6),得到本方法的相对标准偏差(RSD)为0.9%。应用本方法可以实现定量无损地测定微量样品中氯的形态和含量,对城市大气颗粒物中氯的测定发现,颗粒物中无机氯和芳香烃代有机氯含量分别为110和12 ng/m3,链烃代氯的含量低于检出限。应用本方法对北京某地区大气颗粒物中氯元素形态进行测定,确定氯的主要存在形式是无机氯和芳香烃氯。
        An analytical method of X-ray absorption near edge spectrometry(1sXANES) including the quality control for chlorine species in the atmospheric particles was established.The inorganic and aromatic and aliphatic chlorine in the standard and ≤0.2 atmospheric particle samples were analyzed under the conditions of 300-350 synchrotron radiation light beam intensity,storage ring energy of 1.5 GeV and photon energy of 2.82 keV.Calculated by fitting standard spectra,the method detection limits of inorganic,aliphatic and aromatic chlorine were 5.4,8.7 and 1.7 μg/g,respectively.The detectable frequency of atmospheric particle samples was almost 95%.The relative standard deviation(RSD) of repeated measurements of 3-chloro acid standard was 0.9%(n=6).The method was successfully applied to analyze the urban atmospheric particles non-destructively.The contents of inorganic chlorine,aromatic hydrocarbon-substituded organic chlorine in atmospheric ultra-fine particles(≤0.2 μm) were 110 and 12 ng/m3,respectively,while the chain hydrocarbon substituted organic chlorine was not detected.The developed method was applied to the determination of chlorine species concentration in the atmospheric particles.The results showed that the main chlorine species in one place of Beijing were inorganic chlorine and aromatic chlorine.
引文
1 Ramgolam K,Favez O,Cachier H,Gaudichet A,Marano F,Martinon L,Baeza-Squiban A.Particle and Fibre Toxicology,2009,6(10):1-12
    2 JIN Xin,CHENG Meng-Tian,WEN Tian-Xue,TANG Gui-Qian,WANG Hui,WANG Yue-Si.Evironmental Chemistry,2012,31(6):783-790金鑫,程萌田,温天雪,唐贵谦,王辉,王跃思.环境化学,2012,31(6):783-790
    3 Cho S-H,Tong H,McGee J K,Baldauf R W,Krantz Q T,Gilmour M I.Environmental Health Perspectives,2009,117(11):1682-1689
    4 Venier M and Hites R A.Environmental Science&Technology,2010,44(2):618-623
    5 Baek S Y,Choi S D,Lee S J and Chang Y S.Environmental Science&Technology,2008,42(19):7336-7340
    6 Harner T,Shoeib M,Gouin T,Blanchard P.Environmental Science&Technology,2006,40(17):5333-5339
    7 Nicholls C R,Allchin C R,Law R J.Environmental Pollution,2001,114(3):415-430
    8 Holmstrand H,Gadomski D,Mandalakis M,Tysklind M,Irvine R,Andersson P,Gustafsson O.Environmental Science&Technology,2006,40(12):3730-3735
    9 Shunthirasingham C,Oyiliagu C E,Cao X,Gouin T,Wania F,Lee S C,Pozo K,Harner T,Muir D C G.Journal of Envi-ronmental Monitoring,2010,12(9):1650-1657
    10 Angels Olivella M,Caixach J,Pianas C,Oliveras A,Jove P.Chemosphere,2012,86(7):754-758
    11 Venier M,Hites R A.Environmental Science&Technology,2010,44(2):618-623
    12 Salihovic S,Lampa E,Lindstrom G,Lind L,Lind P M,van Bavel B.Environment International,2012,44:59-67
    13 Siddik Cindoruk S,Tasdemir Y.Environ Pollut,2007,148(1):325-333
    14 Herrera L C,Potvin M A and Melanson J E.Rapid Communications in Mass Spectrometry,2010,24(18):2745-2752
    15 Roosens L,Geeraerts C,Belpaire C,Van Pelt I,Neels H,Covaci A.Environment International,2010,36(5):415-423
    16 Xu D D,Dan M,Song Y,Chai Z F and Zhuang G S.Atmospheric Environment,2005,39(22):4119-4128
    17 WANG Jian,WENG Jun-Jie,JIA Liang-Yuan,PAN Yang.Chinese J.Anal.Chem.,2012,40(7):1048-1052王健,翁俊桀,贾良元,潘洋.分析化学,2012,40(7):1048-1052
    18 GAO Yu-Xi,FENG Wei-Yue,LI Bai,ZHANG Pei-Qun,HE Wei,HUANG Yu-Ying,CHAI Zhi-Fang.Nuclear Techniques,2004,27(3):165-169高愈希,丰伟悦,李柏,章佩群,伟何,黄宇营,柴之芳.核技术,2004,27(3):165-169
    19 Golosio B,Simionovici A,Somogyi A,Camerani C,Steenari B M.Journal De Physique Iv,2003,104:647-650
    20 WANG Yin-Song,LI Ai-Guo,ZHANG Yuan-Xun,XIE Ya-Ning,LI De-Lu,LI Yan,ZHANG Gui-Lin.Chinese Science Bulletin,2006,51(12):1474-1478王荫淞,李爱国,张元勋,谢亚宁,李德禄,李燕,张桂林.科学通报,2006,51(12):1474-1478
    21 Pattanaik S,Huggins F E,Huffman G P,Linak W P,Miller C A.Environmental Science&Technology,2007,41(4):1104-1110
    22 Myneni S C.Science,2002,295(5557):1039-1041
    23 Nilsson M L,Bengtsson S,Kylin H.Environmental Pollution,2012,163:142-148
    24 DAN De-Zhong.Environmental Analytical Chemistry.Beijing:Science Press,2009:20-50但德忠.环境分析化学,北京:科学出版社,2009:20-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700