考虑力组合效应的钢框架端板连接力学行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical behavior of steel frame end-plate connections considering force combination effect
  • 作者:梁刚 ; 郭宏超 ; 刘云贺 ; 杨迪雄
  • 英文作者:LIANG Gang;GUO Hongchao;LIU Yunhe;YANG Dixiong;School of Civil Engineering and Architecture, Xi'an University of Technology;State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China (Xi'an University of Technology);
  • 关键词:钢结构 ; 平齐端板连接 ; 高强钢 ; 有限元方法 ; 力学性能 ; 破坏模式 ; 弯矩和轴力
  • 英文关键词:steel structures;;flush end-plate connection;;high strength steel(HSS);;finite element method(FEM);;mechanical property;;failure mode;;bending moment and axial force
  • 中文刊名:DGGC
  • 英文刊名:Earthquake Engineering and Engineering Dynamics
  • 机构:西安理工大学土木建筑工程学院;省部共建西北旱区生态水利国家重点实验室(西安理工大学);
  • 出版日期:2019-02-15
  • 出版单位:地震工程与工程振动
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(51308454);; 中国博士后科学基金项目(2013M542371);; 西安理工大学科技新星项目~~
  • 语种:中文;
  • 页:DGGC201901012
  • 页数:10
  • CN:01
  • ISSN:23-1157/P
  • 分类号:98-107
摘要
为研究不同力组合效应对平齐端板连接力学行为的影响,采用ABAQUS程序建立不同受力情况下连接的非线性简化有限元模型,通过与国内外典型试验结果对比分析,验证了有限元模型的可靠性。基于此通过考虑8种力组合因素的影响,分析了2种不同钢等级的梁柱节点力学行为,进一步讨论了EC3 Part 1-8规范的适用性。结果表明:简化有限元模型在弯矩-转角曲线、破坏形态、初始刚度和塑性抗力等方面与试验结果吻合良好。框架梁轴力对节点的力学行为影响显著,当轴拉力为20%的框架梁轴向塑性抗力N_(pl)时,高强钢节点的刚度和强度分别降低68%和52%;当轴压力为-20%N_(pl)时,刚度和强度分别增加89%和42%。此外节点的滞回耗能能力、破坏模式以及分类属性与梁轴力水平密切相关。对于高强钢梁柱平齐端板节点,EC3规范对框架梁轴压力的限值仍过于保守。研究结果对于提高结构的抗倒塌能力和组合力作用下的理论研究具有重要参考价值。
        In order to study the influence of the different force combination effect on the mechanical behavior of flush end-plate connection. Non-linear simplified finite element models of the connection were developed using ABAQUS under the different forced cases, and proved to be correct and applicable compared with typical test results at home and abroad. Based on the finite element model, the mechanical behavior of the flush end-plate connection with two steel grades were analysed by considering the eight force combination effects. In addition, the effectiveness of EC3 Part 1-8 was discussed. The analytical results reveal that the simplified finite element model agrees well with the experimental results in terms of moment rotation curve, failure modes, initial stiffness and plastic resistance. The presence of an axial force on the beam significantly affect the connection behavior, when +20% of the beam plastic resistance(N_(pl)) is applied to the beam, the initial stiffness and strength of the specimens using HSS decrease by 68% and 52% respectively, and of the specimens increased by 89% and 42% respectively when it is-20% N_(pl). Furthermore, energy dissipation capacity, failure mode and classification properties of the joints are closely related to the level of axial force on the beam. For the flush end-plate connection using HSS, the EC3 method is too conservative in the cases of compression force. The research result makes a certain contribution in improving the anti-collapse capabilities and theoretical researches for steel structure under the combined forces.
引文
[1] 施刚, 石永久, 王元清. 钢框架梁柱端板连接的非线性有限元分析[J]. 工程力学, 2008, 25(12):79-85.SHI Gang, SHI Yongjiu, WANG Yuanqing. Nonlinear finite element analysis of end-plate connections in steel frames[J]. Engineering Mechanics, 2008, 25(12):79-85. (in Chinese)
    [2] EL-Khoriby S, Sakr M A, Khalifa T M, et al. Modelling and behaviour of beam-to-column connections under axial force and cyclic bending[J]. Journal of Constructional Steel Research, 2017, 129:171-184. DOI: 10.1016/j.jcsr.2016.11.006.
    [3] Zepeda J A, Itani A M, Sahai R. Cyclic behavior of steel moment frame connections under varying axial load and lateral displacements[J]. Journal of Constructional Steel Research, 2003, 59:1-25. DOI: 10.1016/S0143-974X(02)00028-7.
    [4] Lima L, Da Silva L, Vellasco P, et al. Behaviour of flush endplate beam-to-column joints under bending and axial force[J]. Steel and composite structures, 2004, 4 (2):77-94. DOI: 10.12989/scs.2004.4.2.077.
    [5] Lima L, Da Sila L, Vellasco P, et al. Experimental evaluation of extended endplate beam-to-column joints subjected to bending and axial force[J]. Engineering Structures, 2004, 26:1333-1347. DOI: 10.1016/j.engstruct.2004.04.003.
    [6] Oosterhof S A, Driver R G. Performance of steel shear connections under combined moment, shear, and tension[C]// Structures Congress. 2012:146-157. DOI: 10.1061/9780784412367.014.
    [7] 陈以一, 柯珂, 贺修樟, 等. 配置耗能梁的复合高强钢框架抗震性能试验研究[J]. 建筑结构学报, 2015, 36(11):1-9. CHEN Yiyi, KE ke, HE Xiuzhang, et al. Experimental study on seismic performance of high strength moment resisting frames with energy dissipation beams[J]. Journal of Building Structures, 2015, 36(11):1-9. (in Chinese)
    [8] HU Fangxin, SHI Gang, SHI Yongjiu. Experimental study on seismic behavior of high strength steel frames: Global response[J]. Engineering Structures, 2017, 131:163-179. DOI: 10.1016/j.engstruct.2016.11.013.
    [9] 罗永峰, 王熹宇, 强旭红, 等. 高强钢在工程结构中的应用进展[J]. 天津大学学报: 自然科学与工程技术版, 2015(s1):134-141. LUO Yongfeng, WANG Xiyu, QIANG Xuhong, et al. Progress in Application of High Strength Steel to Engineering Structures[J]. Journal of Tianjin University: Science and Technology, 2015(s1): 134-141. (in Chinese)
    [10] Eurocode 3. Design of Steel Structures. Part 1-8: design of joints[S]. Brussels: European Committee for Standardization, 2005.
    [11] 贾磊鹏, 郭子雄, 刘阳, 等. 核心钢管混凝土短柱轴压受力机理及设计方法研究[J]. 地震工程与工程振动, 2015, 35(3): 79-85. JIA Leipeng, GUO Zixiong, LIU Yang, et al, Study on axial compression mechanism and design method of core steel tubular reinforced concrete short columns[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 79-85.( in Chinese)
    [12] Girao Coelho A M, Simoes Da Silva L, Bijlaard F S K, Finite-element modeling of the nonlinear behavior of bolted T-stub connections[J]. Journal of Structural Engineering, 2006, 132 (6): 918-928.
    [13] 潘斌, 石永久, 王元清. Q460 等级高强度钢材螺栓抗剪连接孔壁承压性能有限元分析[J]. 建筑科学与工程学报, 2012, 29(2): 48-54.PAN Bin,SHI Yongjiu,WANG Yuanqing,Finite element analysis of bolted connection in Q460 grade high strength steels under static shear [J]. Journal of Architecture and Civil Engineering, 2012, 29(2): 48-54. ( in Chinese)
    [14] 杨应华,师梦尘. 翼缘削弱型端板连接节点抗震性能分析[J]. 地震工程与工程振动, 2015, 35(2): 157-165. YANG Yinghua, SHI Mengchen. Analysis of seismic behavior of beam-to-column end-plate connections with reduced beam section[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(2): 157-165.( in Chinese)
    [15] 梁刚, 郭宏超, 刘云贺, 等. Q690高强钢T-stub节点力学性能有限元分析[J]. 地震工程与工程振动, 2017, 37(6): 90-97.LIANG Gang, GUO hongchao, LIU Yunhe, et al. Finite element analysis of mechanical property of Q690 high strength steel T-stub joints[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(6): 90-97.(in Chinese)
    [16] 孙飞飞, 孙密, 李国强, 等. Q690高强钢端板连接梁柱节点抗震性能试验研究[J]. 建筑结构学报, 2014: 35(4): 116-124.SUN Feifei, SUN Mi, LI Guoqiang, et al. Experimental study on seismic behavior of high-strength steel beam-to-column end-plate connections[J]. Journal of Building Structures, 2014, 35(4): 116-124. (in Chinese)
    [17] GUO Hongchao, LIANG Gang, LI Yanlong, et al. Q690 high strength steel T-stub tensile behavior: Experimental research and theoretical analysis[J]. Journal of Constructional Steel Research, 2017, 139: 473-483.
    [18] Eurocode 3. Design of Steel Structures: Part 1-1: General Rules and Rules for Buildings[S]. British Standards Institution, London, 2005.
    [19] AISC/ANSI 341-10. Seismic Provisions for Structural Steel Buildings[S]. Chicago: American Institute of Steel Construction, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700