环己酮氧化制备ε-己内酯的工艺研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in preparation of ε-caprolactone by cyclohexanone oxidation
  • 作者:王媛媛 ; 龚华银 ; 刘赛赛 ; 朱明乔
  • 英文作者:Wang Yuanyuan;Gong Huayin;Liu Saisai;Zhu Mingqiao;College of Chemical and Biological Engineering, Zhejiang University;Research Institute of Zhejiang University in Quzhou;Taizhou Yuanzhong Pharmaceutical Co., Ltd;
  • 关键词:ε-己内酯 ; 环己酮 ; 氧化工艺 ; 催化氧化 ; 技术进展
  • 英文关键词:ε-caprolactone;;cyclohexanone;;oxidation process;;catalytic oxidation;;technological progress
  • 中文刊名:HCXV
  • 英文刊名:China Synthetic Fiber Industry
  • 机构:浙江大学化学工程与生物工程学院;浙江大学衢州研究院;台州市源众药业有限公司;
  • 出版日期:2019-04-15
  • 出版单位:合成纤维工业
  • 年:2019
  • 期:v.42;No.244
  • 基金:浙江省自然科学基金(Y4080247);; 浙江省重大科技计划项目(2010C01035);; 广西石化资源加工及过程强化技术重点实验室开放课题基金(K002);; 工业控制技术国家重点实验室开放课题基金(ICT1224);; 浙江台州源众药业有限公司资助
  • 语种:中文;
  • 页:HCXV201902016
  • 页数:8
  • CN:02
  • ISSN:43-1139/TQ
  • 分类号:58-65
摘要
综述了近年来环己酮氧化制备ε-己内酯的工艺研究进展并评述了各工艺的优缺点。以环己酮为原料氧化制备ε-己内酯的工艺主要有过氧酸氧化、双氧水氧化、氧气/醛类共氧化和生物氧化等4种氧化工艺,其中过氧酸、双氧水为氧源氧化环己酮制备ε-己内酯的技术已被人们成功掌握。过氧酸氧化法是目前工业大规模生产ε-己内酯的主流。但是,基于当今绿色化学的要求和发展现状,双氧水氧化工艺是最经济和具有发展前景的制备ε-己内酯的工艺,需研发高效稳定的催化剂及其工艺中的除水技术。
        The research progress in the preparation of ε-caprolactone by cyclohexanone oxidation were reviewed in recent years, as were the advantages and disadvantages of the production processes. The preparation of ε-caprolactone by cyclohexanone oxidation includes four types of oxidation processes: peroxy acid oxidation, hydrogen peroxide oxidation, oxygen/aldehyde co-oxidation and biological oxidation. Among them, the technology of preparing ε-caprolactone by oxidizing cyclohexanone with peroxy acid and hydrogen peroxide has been successfully mastered. Peroxy acid oxidation is the mainstream of large-scale industrial production of ε-caprolactone. However, based on the requirements and development status of green chemistry, the oxidation process of hydrogen peroxide is the most economical and promising process for the preparation of ε-caprolactone. It is necessary to develop efficient and stable catalysts and water removal technology in the process.
引文
[1] Dash T K,Konkimalla V B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review[J]. J Control Release, 2012,158(1):15-33.
    [2] Bang L T,Kawachi G,Nakagawa M,et al. The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite[J]. J Appl Polym Sci, 2013,130(1):426-433.
    [3] Tardajos M G,Cama G,Dash M, et al. Chitosan functionalized poly-epsilon-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications[J]. Carbohyd Polym, 2018,191:127-135.
    [4] Huang Shan,Xiao Juan,Zhu Yanan,et al. Synthesis and properties of spray-applied high solid content two component polyurethane coatings based on polycaprolactone polyols[J]. Prog Org Coat, 2017,106:60-68.
    [5] Jaworska J,Jelonek K,Kajzer W,et al. Comparison of biodegradable poly(glycolide-epsilon-caprolactone) and poly(glycolide-epsilon-caprolactone-D,L-lactide) coatings enriched with ciprofloxacin formed on Ti6Al4V alloy[J]. Polym Degrad Stab, 2018,155:136-144.
    [6] Wang Wenxin, Yin Zhihui, Detrembleur C, et al. The use of ε-caprolactone as a polymerizable solvent for the atom transfer radical polymerization of MMA at low temperature[J]. Macromol Chem Phys, 2015,203(7):968-974.
    [7] 章亚东, 位蕊蕊. 环己酮Baver-Villiger氧化反应制备ε-己内酯的研究进展[J]. 河南化工, 2013, 30(9):22-27.
    [8] Chrobok A. The Baeyer-Villiger oxidation of ketones with Oxone? in the presence of ionic liquids as solvents[J]. Tetrahedron, 2010,66(32):6212-6216.
    [9] Mello R, Olmos A, Parra-Carbonell J, et al. Baeyer-Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions[J]. Green Chem, 2009,11(7):994-999.
    [10] Baj S, Chrobok A, Siewniak A. New and efficient technique for the synthesis of ε-caprolactone using KHSO5 as an oxidising agent in the presence of a phase transfer catalyst[J]. Applied Catalysis A General, 2011,395(1):49-52.
    [11] Kuznetsov V A, Pervova M G, Yatluk Y G. Synthesis of ε-caprolactone with stable hydrogen peroxide adducts[J]. Russ J Appl Chem, 2013,86(2):176-181.
    [12] Randino R, Cini E, D'Ursi A M, et al. Facile Baeyer-Villiger oxidation of cyclic ketones: Conventional versus microwave-assisted approach[J]. Cheminform, 2015,56(42):5723-5726.
    [13] 李韶峰,何红振,李明,等. 过氧乙酸合成及其在ε-己内酯制备中的应用[J]. 化学推进剂与高分子材料, 2016,14(1):36-43.
    [14] Zhang Guangxu,Ou Huaqiang,Hu Changlin, et al. Synthesis of ε-caprolactone over solid acid catalysts I. Characterization and activity of the catalysts[J]. Petrochem Tech, 2011,40(5):486-491.
    [15] 李健,葛九敢,陈新春,等. 一种活性炭固载杂多酸用于合成ε-己内酯的方法:中国,104447672A[P]. 2015-03-25.
    [16] Markiton M, Boncel S, Janas D, et al. Highly active nanobiocatalyst from lipase non-covalently immobilized on multi-walled carbon nanotubes for Baeyer-Villiger synthesis of lactones[J]. Acs Sustain Chem Eng, 2017,5(2):1685-1691.
    [17] Zhang Guangxu,Ren Xiaocong,Zhang Hongbo, et al. MgO/SnO2/WO3 as catalysts for synthesis of ε-caprolactone over oxidation of cyclohexanone with peracetic acid[J]. Catal Commun, 2015,58:59-63.
    [18] 严生虎, 韩玲玲, 沈卫, 等. 微通道中环己酮氧化合成ε-己内酯的连续流工艺[J]. 化工进展, 2014,33(11):3061-3066.
    [19] Chen Jian, Zhao Xiaoshuang, Zhang Guangxu, et al. Synthesis of ε-caprolactone by oxidation of cyclohexanone with monoperoxysuccinic acid[J]. Chin J Chem Eng, 2013,21(12):1404-1409.
    [20] Michelin R A, Sgarbossa P, Scarso A, et al. The Baeyer-Villiger oxidation of ketones: A paradigm for the role of soft Lewis acidity in homogeneous catalysis[J]. Coord Chem Rev, 2010,254(5/6):646-660.
    [21] 李心忠, 冯艳茹, 林棋. I2/Bronsted酸性离子液体介导的ε-环己内酯的合成研究[J]. 工业催化, 2012,20(3):63-66.
    [22] Uyanik M, Ishihara K. Baeyer-Villiger oxidation using hydrogen peroxide[J]. Acs Catal, 2013,3(4):513-520.
    [23] Piscopo C G, Loebbecke S, Maggi R, et al. Supported sulfonic acid as green and efficient catalyst for Baeyer-Villiger oxidation with 30% aqueous hydrogen peroxide[J]. Adv Synth Catal, 2010, 352(10):1625-1629.
    [24] Li Xinzhong, Cao Rong, Lin Qi. Solvent-free Baeyer-Villiger oxidation with H2O2 as oxidant catalyzed by multi-SO3H functionalized heteropolyanion-based ionic hybrids[J]. Catal Commun, 2015, 63(1): 79-83.
    [25] Yang Zhiwang,Xu Xueqing,Li Tianjing, et al. Preparation and catalytic property of multi-walled carbon nanotubes supported keggin-typed tungstosilicic acid for the Baeyer-Villiger oxidation of ketones[J]. Catal Lett, 2015,145(11):1955-1960.
    [26] Zhou Yingjie, Huang Rongcai, Ding Fuchuan, et al. Sulfonic acid functionalized α-zirconium phosphate single layer nanosheets as a strong solid acid for heterogeneous catalysis applications[J]. Acs Appl Mater Interface, 2014,6(10):7417-7425.
    [27] Hara T, Hatakeyama M, Kim A, et al. Preparation of clay-supported Sn catalysts and application to Baeyer-Villiger oxidation[J]. Cheminform, 2012,43(30):771-777.
    [28] Xia Changjiu, Ju Long, Zhao Yi, et al. Heterogeneous oxidation of cyclohexanone catalyzed by TS-1: Combined experimental and DFT studies[J]. Chin J Catal, 2015,36(6):845-854.
    [29] Hermans I, Conrad S, Wolf P, et al. Influence of hydrophilicity on the Sn β-catalyzed Baeyer-Villiger oxidation of cyclohexanone with aqueous hydrogen peroxide[J]. Chemcatchem, 2017,9(1):175-182.
    [30] Kang Zihua, Zhang Xiongfu, Liu Haiou, et al. A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation[J]. Chem Eng J, 2013,218(3):425-432.
    [31] Otomo R, Kosugi R, Kamiya Y, et al. Modification of Sn-Beta zeolite: Characterization of acido-basic properties and catalytic performance in Baeyer-Villiger oxidation[J]. Catal Sci Tech, 2016,6(8):2787-2795.
    [32] Yang Xiaohui, Jiang Yangqiu, Li Yudong, et al. Mesoporous silica beads containing active and stable tin species for the Baeyer-Villiger oxidations of cyclic ketones[J]. Microporous Mesoporous Mater, 2017,253:40-48.
    [33] Paul M, Pal N, Mondal J, et al. New mesoporous magnesium-aluminum mixed oxide and its catalytic activity in liquid phase Baeyer-Villiger oxidation reaction[J]. Chem Eng Sci, 2012,71:564-572.
    [34] Sipos P, Pálinkó I. As-prepared and intercalated layered double hydroxides of the hydrocalumite type as efficient catalysts in various reactions[J]. Catal Today, 2016,306:32-41.
    [35] Olszówka J E, Karcz R, Michalik-Zym A, et al. Effect of grinding on the physico-chemical properties of Mg-Al hydrotalcite and its performance as a catalyst for Baeyer-Villiger oxidation of cyclohexanone[J/OL]. Catal Today, 2018,[2018-05-22].https//doi.org/10.1016/j.cattod.2018.05.035.
    [36] Zhu Lihua, Cao Maohong, Zhou Hua, et al. A highly stable and active CaO/Al2O3 base catalyst in the form of calcium aluminate phase for oxidation of cyclohexanone to ε-caprolactone[J]. Catal Lett, 2014,144(7):1188-1196.
    [37] Hazra S, Martins N M R, Kuznetsov M L, et al. Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal-Sn(Ⅳ) compounds and their catalytic activity in Baeyer-Villiger oxidation of cyclohexanone[J]. Dalton Trans, 2017,46(39):13364-13375.
    [38] Hazra S, Martins N M R, Mahmudov K, et al. A tetranuclear diphenyltin(Ⅳ) complex and its catalytic activity in the aerobic Baeyer-Villiger oxidation of cyclohexanone[J]. J Organometall Chem, 2018,867:193-200.
    [39] Cao Qiang, Yin Qing, Chen Qi, et al. Fluorinated porous conjugated polyporphyrins via direct C-H arylation polycondensation: Preparation, porosity, and heterogeneous catalyst for Baeyer-Villiger oxidation[J]. Chemistry, 2017,23(41):9831-9837.
    [40] Jeong E Y, Ansari M B, Park S E. Aerobic Baeyer-Villiger oxidation of cyclic ketones over metalloporphyrins bridged periodic mesoporous organosilica[J]. Acs Catal, 2011,1(8):855-863.
    [41] Chen Shaoyun, Zhou Xiantai, Li Yang, et al. Biomimetic Baeyer-Villiger oxidation of ketones with SnO2 as cocatalyst, features in activating carbonyl group of substrates[J]. Chem Eng J, 2014,241:138-144.
    [42] Chen Shaoyun, Zhou Xiantai, Ji Hongbing. Insight into the cocatalyst effect of 4A molecular sieve on Sn(Ⅱ) porphyrin-catalyzed B-V oxidation of cyclohexanone[J]. Catal Today, 2016,264:191-197.
    [43] Zhou Zhiwei, Wang Jianzong, Qin Juan, et al. The multifunctional mesoporous Sn-Cu-Ti catalysts for the B-V oxidation of cyclohexanone by molecular oxygen[J]. J Porous Mater, 2018,25(3):835-843.
    [44] Huo Hongfei, Wu Li, Ma Jianxin, et al. Fabrication of Fe3O4-L-dopa-Cu-Ⅱ/Sn-Ⅳ@ micro-mesoporous-SiO2 catalyst applied to Baeyer-Villiger oxidation reaction[J]. Chemcatchem, 2016, 8(4):779-786.
    [45] Ma Yongli, Liang Zhengyong, Feng Shuxiao, et al. Baeyer-Villiger oxidation of cyclohexanone by molecular oxygen with Fe-Sn-O mixed oxides as catalysts[J]. Appl Organometall Chem, 2015,29(7):450-455.
    [46] Modi C K, Panwala S, Vithalani R, et al. Ionic liquid infiltrated within metal loaded zeolites for Baeyer-Villiger oxidation reaction under solvent-free condition[J]. J Porous Mater, 2017,25(3):871-883.
    [47] Rahman S, Enjamuri N, Gomes R, et al. Aerobic Baeyer-Villiger oxidation of cyclic ketones over periodic mesoporous silica Cu/Fe/Ni/Co-HMS-X[J]. Appl Catal A Gen, 2015,505:515-523.
    [48] Zang Juan, Ding Yunjie, Yan Li, et al. Highly efficient and reusable Cu-MCM-41 catalyst for the Baeyer-Villiger oxidation of cyclohexanone[J]. Catal Commun, 2014,51(7):24-28.
    [49] Zheng Chunming, Chang Shubin, Yang Chuanwu, et al. Enhanced shape selective catalysis of mixed cyclic ketones in aerobic Baeyer-Villiger oxidation with magnetic Cu-Fe3O4 supported mesoporous silica microspheres[J]. Tetrahedron, 2018,74(21):2608-2616.
    [50] Nabae Y, Rokubuichi H, Mikuni M, et al. Catalysis by carbon materials for the aerobic Baeyer-Villiger oxidation in the presence of aldehydes[J]. Acs Catal, 2013,3(2):230-236.
    [51] Li Yuefang, Guo Mingqi, Yin Shuangfeng, et al. Graphite as a highly efficient and stable catalyst for the production of lactones[J]. Carbon, 2013,55(2):269-275.
    [52] Zhang Xueyao, Yang Honglei, Yang Guangxue, et al. Metal-free mesoporous SiO2 nanorods as a highly efficient catalyst for the Baeyer-Villiger oxidation under mild conditions[J]. Acs Sustainable Chem Eng, 2018,6(5):5868-5876.
    [53] Schmidt S,Scherkus C,Muschiol J,et al. An enzyme cascade synthesis of ε-caprolactone and its oligomers[J]. Angew Chem,2015,54(9):2784-2787.
    [54] Yachnin B J, McEvoy M B, MacCuish R J, et al. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis[J]. Acs Chem Biol, 2014,9(12):2843-2851.
    [55] Romero E, Gómez Castellanos J R G, Gadda G, et al. Same substrate, many reactions: Oxygen activation in flavoenzymes[J]. Chem Rev, 2018,118(4):1742-1769.
    [56] Bornadel A, Hatti-Kaul R, Hollmann F, et al. A bi-enzymatic convergent cascade for ε-caprolactone synthesis employing 1,6-hexanediol as a ′double-smart cosubstrate′[J]. Chemcatchem, 2015,7(16):2442-2445.
    [57] Romero E, Mattevi A, Fraaije M W. Characterization and crystal structure of a robust cyclohexanone monooxygenase[J]. Angew Chem, 2016,55(51):15852-15855.
    [58] Parra L P, Acevedo J P, Reetz M T. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone[J]. Biotechnol Bioeng, 2015,112(7):1354-1364.
    [59] Walton A Z, Stewart J D. An Efficient enzymatic Baeyer-Villiger oxidation by engineered escherichia coli cells under non-growing conditions[J]. Biotechnol Prog, 2002,18(2):262-268.
    [60] Silva A L P, Batista P K, Filho A D, et al. Rapid conversion of cyclohexenone, cyclohexanone and cyclohexanol to ε-caprolactone by whole cells of Geotrichum candidum CCT 1205[J]. Biocatal Biotransform, 2017,35(3):1-6.
    [61] Drozdz A, Erfurt K, Bielas R, et al. Chemo-enzymatic Baeyer-Villiger oxidation in the presence of Candida Antarctica lipase B and ionic liquids[J]. New J Chem, 2015,39(2):1315-1321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700