有机酸对B-Fe/Ni降解阿莫西林的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Organic Acid on Degradation of Amoxicillin in Aqueous Solution Using B-Fe/Ni
  • 作者:李文鹏 ; 李星逸 ; 续鹏 ; 翁秀兰 ; 陈祖亮
  • 英文作者:LI Wenpeng;LI Xingyi;XU Peng;WENG Xiulan;CHEN Zuliang;College of Environmental Science and Engineering,Fujian Normal University;Chinese Research Academy of Environmental Sciences;
  • 关键词:膨润土负载纳米铁/镍 ; 阿莫西林 ; 腐殖酸 ; 乙二胺四乙酸
  • 英文关键词:B-Fe/Ni;;amoxicillin;;humic acid;;ethylenediamine tetraacetic acid
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:福建师范大学环境科学与工程学院;中国环境科学研究院;
  • 出版日期:2018-05-25 15:57
  • 出版单位:环境科学研究
  • 年:2018
  • 期:v.31;No.247
  • 基金:福建省自然科学基金项目(No.2016J05028)~~
  • 语种:中文;
  • 页:HJKX201808011
  • 页数:6
  • CN:08
  • ISSN:11-1827/X
  • 分类号:95-100
摘要
为了研究水体中的有机酸对B-Fe/Ni(膨润土负载纳米铁/镍)降解阿莫西林的影响,以HA(腐殖酸)和EDTA(乙二胺四乙酸)作为研究对象,系统分析了不同质量浓度HA(0、10、50、100 mg/L)和EDTA(0、10、50、100 mg/L)对B-Fe/Ni降解阿莫西林的影响.以阿莫西林的降解率来考察HA和EDTA对B-Fe/Ni降解阿莫西林的效率产生的影响,并采用SEM(扫描电子显微镜)和XRD(X射线粉末衍射)等手段,探究了这两种有机酸对B-Fe/Ni降解阿莫西林产生影响的原因.结果表明:(1)当反应时间为10 min时,在HA质量浓度分别为0、10、50、100 mg/L的体系中,阿莫西林的降解率分别为63.6%、88.6%、87.3%、81.8%;(2)当反应时间为10 min时,在EDTA质量浓度分别为0、10、50、100 mg/L的的体系中,阿莫西林的降解率分别为63.6%、74.3%、65.7%、33.6%;(3)纳米铁在反应过程中被氧化为铁氧化物或氢氧化物沉淀,形成钝化层.研究显示,HA和EDTA在低质量浓度下会对B-Fe/Ni降解阿莫西林产生促进作用,而在高质量浓度下则会产生抑制作用.
        In order to study the influences of organic acids on degradation of amoxicillin using bentonite supported Fe/Ni(B-Fe/Ni),the effect of humic acid(HA) and ethylenediamine tetraacetic acid(EDTA) on degradation of amoxicillin was investigated. The effects of different mass concentrations of HA(0,10,50 and 100 mg/L) and EDTA(0,10,50 and 100 mg/L) on the degradation of amoxicillin by B-Fe/Ni were systematically analyzed. The materials were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD). The results revealed that the degradation rates of amoxicillin in the systems containing 0,10,50,and 100 mg/L of mass concentration of HA were 63. 6%,88. 6%,87. 3% and 81. 8%,respectively under 10 minutes reaction time,while the degradation rates of amoxicillin in the systems containing 0,10,50,and 100 mg/L of mass concentration of EDTA were 63. 6%,74. 3%,65. 7%,and33. 6%,respectively. The result of analysis of SEM and XRD showed that iron oxide or hydroxide precipitates and passivation layer formed as the reaction progress. HA and EDTA can promote the degradation of amoxicillin by B-Fe/Ni at low mass concentration of HA and EDTA,while inhibit the degradation of amoxicillin at high mass concentration.
引文
[1]WENG Xiulan,CAI Wanlin,LIN Shen,et al.Degradation mechanism of amoxicillin using clay supported nanoscale zerovalent iron[J].Applied Clay Science,2017,147:137-142.
    [2]PADILLA-ROBLESB G,ALONSO A,MARTNEZ-DELGADILLO S A,et al.Electrochemical degradation of amoxicillin in aqueous media[J].Chemical Engineering and Processing:Process Intensification,2015,94:93-98.
    [3]朱永官,欧阳纬莹,吴楠,等.抗生素耐药性的来源与控制对策[J].中国科学院院刊,2015,30(4):509-516.ZHU Yongguan,OUYANG Weiying,WU Nan,et al.Antibiotic resistance:sources and mitigation[J].Bulletin of Chinese Academy of Sciences,2015,30(4):509-516.
    [4]高立红,史亚利,厉文辉,等.抗生素环境行为及其环境效应研究进展[J].环境化学,2013,32(9):1619-1633.GAO Lihong,SHI Yali,LI Wenhui,et al.Environmental behavior and impacts of antibiotics[J].Environmental Chemistry,2013,32(9):1619-1633.
    [5]徐冰洁,罗义,周启星,等.抗生素抗性基因在环境中的来源、传播扩散及生态风险[J].环境化学,2010,29(2):169-178.XU Bingjie,LUO Yi,ZHOU Qixing,et al.Sources,dissemination,and ecological risks of antibiotic resistances genes(ARGs)in the environment[J].Environmental Chemistry,2010,29(2):169-178.
    [6]KMMERER K.Antibiotics in the aquatic environment-a reviewpart I[J].Chemosphere,2009,75(4):417-434.
    [7]ANDREOZZI R,CANTERINO M,MAROTTA R,et al.Antibiotic removal from wastewaters:the ozonation of amoxicillin[J].Journal of Hazardous Materials,2005,122(3):243-250.
    [8]MACGOWAN A,MACNAUGHTON E.Antibiotic resistance[J].Medicine,2017,45(10):622-628.
    [9]李钰婷,张亚雷,代朝猛,等.纳米零价铁颗粒去除水中重金属的研究进展[J].环境化学,2012,31(9):1349-1354.LI Yuting,ZHANG Yalei,DAI Chaomeng,et al.The advance on removal of heavy metals in water by nanoscale zero-valent iron[J].Environmental Chemistry,2012,31(9):1349-1354.
    [10]DE S,ZHANG Jiaguang,LUQUE R,et al.Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J].Energy&Environmental Science,2016,9(11):3314-3347.
    [11]孙芳,何广平,吴宏海,等.有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响[J].环境科学研究,2011,24(4):461-466.SUN Fang,HE Guangping,WU Honghai,et al.Influence of various organic ligands on the removal of Cr(Ⅵ)by bentonite-supported nanoscale zero-valent iron[J].Research of Environmental Sciences,2011,24(4):461-466.
    [12]刘勇,黄超,翁秀兰,等.绿色合成纳米铁去除水中铬离子[J].环境工程学报,2016,10(8):4118-4124.LIU Yong,HUANG Chao,WENG Xiulan,et al.Removal of Cr in aqueous solution using green synthesized Fe NPs[J].Chinese Journal of Environmental Engineering,2016,10(8):4118-4124.
    [13]SHI Lina,LIN Yuman,ZHANG Xin,et al.Synthesis,characterization and kinetics of bentonite supported n ZVI for the removal of Cr(VI)from aqueous solution[J].Chemical Engineering Journal,2011,171(2):612-617.
    [14]SOLIEMANZADEH A,FEKRI M.Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions[J].Chinese Journal of Chemical Engineering,2017,25(7):924-930.
    [15]SOLIEMANZADEH A,FEKRI M.The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI):effect of relative parameters and soil experiments[J].Microporous and Mesoporous Materials,2017,239:60-69.
    [16]LIU Yong,ZHA Shuangxin,RAJARATHNAM D,et al.Divalent cations impacting on Fenton-like oxidation of amoxicillin using n ZVI as a heterogeneous catalyst[J].Separation and Purification Technology,2017,188:548-552.
    [17]GAUTAM R K,RAWAT V,BANERJEE S,et al.Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and congo red in water[J].Journal of Molecular Liquids,2015,212:227-236.
    [18]ZHANG Zhen,SHEN Qiaohui,CISSOKO N,et al.Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid[J].Journal of Hazardous Materials,2010,182(1):252-258.
    [19]KADU B S,WANI K D,KAUL-GHANEKAR R,et al.Degradation of doxorubicin to non-toxic metabolites using Fe-Ni bimetallic nanoparticles[J].Chemical Engineering Journal,2017,325:715-724.
    [20]GONALVES A A,ARAU'JO A F,MESQUITA J P D,et al.Characterisation of silica-supported Fe-Ni bimetallic nanoparticles and kinetic study of reductive degradation of the drug nimesulide[J].Journal of Environmental Chemical Engineering,2016,4(4):4354-4365.
    [21]董磊,林莉,李青云,等.改性凹凸棒土纳米铁复合材料与微生物耦合去除地下水硝酸盐氮的研究[J].环境科学研究,2017,30(7):1112-1119.DONG Lei,LIN Li,LI Qingyun,et al.Removal of nitrate from groundwater by coupling system composed with modified attapulgite/Fe nano composites and microorganisms[J].Research of Environmental Sciences,2017,30(7):1112-1119.
    [22]张晓琳,MWAMULIMA T,王勇梅,等.粉煤灰基多孔材料负载纳米铁的制备及其对龙胆紫的去除效果[J].环境科学研究,2017,30(8):1295-1302.ZHANG Xiaolin,MWAMULIMA T,WANG Yongmei,et al.Preparation of porous pellets based on nano-zero valent ironenhanced fly ash and their application for crystal violet removal[J].Research of Environmental Sciences,2017,30(8):1295-1302.
    [23]GHAUCH A,TUQAN A,ASSI H A.Antibiotic removal from water:elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles[J].Environmental Pollution,2009,157(5):1626-1635.
    [24]WENG Xiulan,SUN Qian,LIN Shen,et al.Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles[J].Chemosphere,2014,103:80-85.
    [25]JUNG B,O'CARROLL D,SLEEP B.The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand[J].Science of the Total Environment,2014,496:155-164.
    [26]周红艺,陈勇,梁思,等.EDTA优化纳米Pd/Fe对2,4-D的催化脱氯研究[J].环境科学学报,2017,37(2):671-679.ZHOU Hongyi,CHEN Yong,LIANG Si,et al.Catalytic dechlorination of 2,4-D in aqueous solution by nanoscale Pd/Fe in the presence of EDTA[J].Acta Scientiae Circumstantiae,2017,37(2):671-679.
    [27]柳林浩,汪玉,李国华,等.小分子有机酸对纳米零价铁还原脱氯4-氯联苯的影响[J].浙江农业学报,2015,27(8):1451-1455.LIU Linhao,WANG Yu,LI Guohua,et al.Impact of low-molecular weight organic acids on dechlorination of 4-Cl BP by nanoscale zerovalent iron[J].Acta Agriculturae Zhejiangensis,2015,27(8):1451-1455.
    [28]ZHANG Zhen,CISSOKO N,WO Jingjing,et al.Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J].Journal of Hazardous Materials,2009,165(1):78-86.
    [29]冷迎祥,刘菲,王文娟,等.小分子有机酸对纳米铁稳定砷的影响[J].环境工程学报,2017,11(5):3195-3203.LENG Yingxiang,LIU Fei,WANG Wenjuan,et al.Effects of small molecule organic acids on nanometer iron for stabilization of arsenic[J].Chinese Journal of Environmental Engineering,2017,11(5):3195-3203.
    [30]ZHU Fang,LI Luwei,REN Wentao,et al.Effect of p H,temperature,humic acid and coexisting anions on reduction of Cr(Ⅵ)in the soil leachate by n ZVI/Ni bimetal material[J].Environmental Pollution,2017,227:444-450.
    [31]WANG Qian,CISSOKO N,ZHOU Mi,et al.Effects and mechanism of humic acid on chromium(VI)removal by zero-valent iron(Fe0)nanoparticles[J].Physics&Chemistry of the Earth Parts A/B/C,2011,36(9/10/11):442-446.
    [32]CHENG Rong,ZHOU Wei,WANG Jianlong,et al.Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles:role of nano-Ni and its size effect[J].Journal of Hazardous Materials,2010,180(1/2/3):79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700