辽河口湿地翅碱蓬群落及其交错区土壤盐分特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of soil salinity in the distribution area of Suaedaheteroptera in Liaohe estuary wetlands
  • 作者:杨楚烨 ; 王立 ; 苏芳莉 ; 李海福
  • 英文作者:YANG Chuye;WANG Li;SU Fangli;LI Haifu;College of Forestry,Gansu Agricultural University;College of Water Conservancy,Shenyang Agricultural University;
  • 关键词:辽河口湿地 ; 翅碱蓬 ; 盐基离子 ; 主成分分析
  • 英文关键词:Liaohe estuary wetland;;Suaeda heteroptera;;base ion;;principal component analysis
  • 中文刊名:STBC
  • 英文刊名:Science of Soil and Water Conservation
  • 机构:甘肃农业大学林学院;沈阳农业大学水利学院;
  • 出版日期:2019-03-18 10:20
  • 出版单位:中国水土保持科学
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金“辽河口翅碱蓬湿地退化及恢复机制研究”(31670711);国家自然科学基金“双台河口湿地生态系统稳定与预警研究”(31670711)
  • 语种:中文;
  • 页:STBC201901016
  • 页数:7
  • CN:01
  • ISSN:10-1449/S
  • 分类号:121-127
摘要
滨海湿地植被类型及分布受土壤盐分影响显著,但其作用效果及机制尚不明确。以辽宁辽河口湿地盐生植物翅碱蓬为研究对象,对其分布的湿地区域分层采集土壤样品并测定盐基离子含量,利用相关分析和主成分分析方法研究不同植被类型区土壤盐分特征。结果表明:翅碱蓬群落及其交错区盐基离子阳离子主要为Na~+、K~+、Ca~(2+)和Mg~(2+),阴离子主要有Cl-、SO24-和HCO_3~-,各层土壤盐分阴离子均以Cl-为主,在0~10 cm、10~20 cm和20~30 cm的土壤盐基离子中分别占18. 55%、17. 3%和23. 95%,阳离子均以Na~+离子为主,从上到下3层土壤中分别占43. 2%、42. 2%和35. 8%。相关性分析结果表明:土壤总盐分和HCO_3~-,与其他盐基离子为正相关,与总盐分相关性最强的阴离子为Cl-,相关系数为0. 966,相关性最强的阳离子为Ca~(2+)和Na~+,相关系数达到了0. 956和0. 912。土壤p H值与HCO_3~-离子为不显著正相关,与其他盐基离子为负相关,翅碱蓬与芦苇交错区和纯翅碱蓬生长区的p H值要更高于裸滩与翅碱蓬交错区,并且随着土层的深入,p H值普遍上升。主成分分析结果表明:在辽河口湿地翅碱蓬分布及其交错区0~30 cm深度的土壤中,Na~+、Ca~(2+)、Cl-和SO24-4种离子占全部盐基离子的85%以上。分析计算得到的翅碱蓬分布及其交错区盐分离子指标综合得分模型可以快速计算出土样点的综合得分从而较准确地对翅碱蓬分布区域的土壤盐度进行评价,通过所得数据可以得到翅碱蓬在辽河口湿地的适生环境为9. 54~18. 46 cmol/kg。该研究成果可为深入认识辽河口湿地翅碱蓬群落及其交错区的土壤盐分特征提供参考。
        [Background]The floristic and plant distribution of coastal wetland are significantly affected by soil salinity,Suaeda heteroptera,as a typical plant in the Liaohe estuary wetlands of Liaoning province,forms a unique landscape of red beach,which attracts tourists from inland and abroad.However,the area of S. heteroptera in Liaohe estuary wetland is decreasing year by year since 2015.Thus it is very urgent for us to protect the S. heteroptera with analyzing the main factors of soil salinization and estimating the salinity growth threshold of S. heteroptera in Liaohe estuary wetland. [Methods]In April 2018,we selected a sample plot in Liaohe estuary wetland with S. heteroptera distribution,we chose 3 types of area,junction area of bare beach and S. heteroptera,pure S. heteroptera growing area,and junction area of S. heteroptera and Phragmites australis. Soil samples at depths of 0-10 cm,10-20 cm and 20-30 cm were collected according to the "three-point sampling method". Soil base ion index,Na~+、K~+、Ca~(2+)、Mg~(2+)、Cl-、SO24-、HCO_3~-and pH,was measured by experiment. All data were analyzed by SPSS and Excel for statistical analysis. [Results]The cations in distribution areas of S.heteroptera were mainly Na~+,K~+,Ca~(2+)and Mg~(2+),while the anions were mainly Cl-,SO24-and HCO_3~-. The soil salinity anions in each layer were mainly Cl-,accounting for 18. 55%,17. 3% and23. 95% of soil base ions at 0-10 cm,10-20 cm and 20-30 cm,respectively. Cations were mainly Na~+,accounting for 43. 2%,42. 2% and 35. 8% of 3 soil layers from top to bottom. Correlation analysis results demonstrated that the soil total salt content and HCO_3~-,was positively associated with other base ions,the anion in the strongest correlation with total salt was Cl-,and the correlation coefficient was0. 966; the cations in the strongest correlation were Ca~(2+)and Na~+,and the correlation coefficient was0. 956 and 0. 912,respectively,The correlation between soil pH and HCO_3~-was insignificantly positive,but negative correlation with other base ions. The pH value at the junction of reed and S. heteroptera area and pure S. heteroptera area were higher than that at the junction area of bare beach and S. heteroptera,and the pH value generally increased with the deepening of soil layer. The results of principal component analysis showed that the 4 ions of Na~+,Ca~(2+),Cl-and SO24-accounted for more than 85% of all base ions in the soil at a depth of 0-30 cm within the region,which were the main ion types affecting soil salinity. The HCO_3~-presented a certain effect on soil alkalinity. [Conclusions]The thresholds of soil salt content in 0-30 cm ranged in 9. 54-18. 46 cmol/kg in the pure S. heteroptera growing area and its 2 junction areas of Liaohe estuary wetland. The results of principal component analysis provide theoretical basis for comprehensive analysis and evaluation of soil salt spatial distribution in S. heteroptera community and its interlaced areas.
引文
[1] DELAUNE R D,WHITE J R. Will coastal wetlands con-tinue to sequester carbon in response to an increase inglobal sealevel? A case study of the rapidly subsidingMississippi river deltaic plain[J]. Climatic Change,2012,110:297.
    [2] STPCKER T F,QIN D,PLATTNER G K,et al. Thephysical science basis. contribution of working group tothe fifth assessment report of the intergovernmental panelon climate change[M]. Cambridge:Cambridge Univer-sity Press; NY,USA:United Kingdom and New York,2013,5163(2):710.
    [3] KNOWLES N. Natural and management influences onfreshwater inflows and salinity in the San Francisco Estu-ary at monthly to inter-annual scales[J]. Water Re-sources Research,2002,3838(12):1.
    [4]彭溶,邹立,汉万兴,等.辽河口芦苇湿地土壤有机碳的积累特征研究[J].中国海洋大学学报,2012,42(5):28.PENG Rong,Zou Li,WAN Hanxing,et al. Studies on theaccumulation of organic carbon in the soil in the reed wet-land at Liaohe Estuary[J]. Journal of Ocean Universityof China,2012,42(5):28.
    [5]樊玉清,王秀海,孟庆生.辽河口湿地芦苇群落退化过程中土壤营养元素和含盐量变化[J].湿地科学,2013,11(1):35.FAN Yuqing,WANG Xiuhai,MENG Qingsheng. Varia-tions of Nutrient Elements and Salt Contents of Soil duringDegradation Process of Phragmites australis Community inLiaohe Estuary Wetlands[J]. Wetland Science,2013,11(1):35.
    [6]苏芳莉,孙旭,孙权,等.湿地翅碱蓬生长及渗透调节物质对盐度的响应[J].生态学杂志,2018,37(7):1997.SU Fangli,SUN Xu,SUN Quan,et al. Responses ofgrowth and osmoregulatory substances of Suaeda heterop-tera to salt concentrations in wetlands.[J]. ChineseJournal of Ecology,2018,37(7):1997.
    [7]刘凯,杨继松,袁晓敏,等. Na Cl对辽河口湿地土壤溶解性有机碳吸附解吸的影响[J].土壤通报,2017,48(6):1379LIU Kai,YANG Jisong,YUAN Xiaomin,et al. Na ClEffect on adsorption and desorption of dissolved organiccarbon in soils in Liaohe Estuary Wetland.[J]. ChineseJournal of Soil Science,2017,48(6):1379.
    [8] FLOWERS T J,COLMER T D. 2008. Salinity tolerancein halophytes[J]. New Phytologist,179:945.
    [9]赵可夫,范海,江行玉,等.盐生植物在盐渍土壤改良中的作用[J].应用与环境生物学报,2002,8(1):31.ZHAO Kefu,FAN Hai,JIANG Xingyu et al. Improvementand utilization of saline soil by planting halophytes[J].Chin J Appl Environ Biol,2002,8(1):31.
    [10]张立宾,徐化凌,赵庚星.碱蓬的耐盐能力及其对滨海盐渍土的改良效果[J].土壤,2007,39(2):310.ZHANG Libin,XU Hualing,ZHAO Gengxing. Salt toler-ance of Suaeda salsa and its soil ameliorating effect oncoastal saline soil[J]. Soils,2007,39(2):310.
    [11]彭赋,许伟,邵荣,等.不同生境种源盐地碱蓬幼苗生长发育对盐分胁迫的响应和适应[J].草业学报,25(4):81.PENG Bin,XU Wei,SHAO Rong,et al. Growth of suae-da salsatin response to salt stress in different habitats[J]. Acta Prataculturae Sinica,25(4):81.
    [12]张颖,郑西来,伍成成,等.辽河口湿地芦苇叶片蒸腾及其与影响因子关系研究[J].湿地科学,2011,9(3):227.ZHANG Ying,ZHENG Xi Lai,WU Chengcheng,et al.Simulation experiment about transpiration characteristicsof Phragmites australis leaf in Liaohe Estuary Wetlands[J]. Wetland Science,2011,9(3):227.
    [13]余世鹏,杨劲松,刘光明,等.长江河口地区土壤水盐动态特点与区域土壤水盐调控研究[J].土壤通报,2008,39(5):1110.YU Shipeng,YANG Jinsong,LIU Guangming,et al. Soilwater-salt dynamics and regional soil water-salt controlin the Yangtze River Estuary[J]. Chinese Journal ofSoil Science,2008,39(5):1110.
    [14]陈楠,李新国.博斯腾湖西岸湖滨带土壤盐分特征分析[J].绵阳师范学院学报,2015,34(5):85.CHEN Nan,LI Xinguo. Analysis of soil salinity charac-teristics in Western Lakeside of Bosten Lake[J]. Jour-nal of Mianyang Normal University,2015,34(5):85.
    [15]何斌,王全九,吴迪,等.基于主成分分析和层次分析法相结合的陕西省农业干旱风险评估[J].干旱地区农业研究,2017,35(1):219.HE Bin,WANG Quanjiu,WU Di,et al. Agriculturaldrought risk assessment in Shaanxi province using prin-cipal component analysis and AHP[J]. Agricultural Re-search in the Arid Areas,2017,35(1):219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700