高稳定度光泵浦腔内倍频488nm半导体薄片激光器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers
  • 作者:王菲
  • 英文作者:Wang Fei;School of Opto-electronic Engineering,Changchun University of Science and Technology;
  • 关键词:激光器 ; 光泵浦半导体薄片激光器 ; 488nm激光器 ; 腔内倍频
  • 英文关键词:lasers;;optically pumped semiconductor disc laser;;488 nm laser;;intra-cavity frequency doubling
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:长春理工大学光电工程学院;
  • 出版日期:2019-04-25 17:27
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.296
  • 基金:国家自然科学基金(61076039);; 吉林省高校十三五科研规划(JJKH20170616KJ);; 长春理工大学科技创新基金(XJJLG-2017-12)
  • 语种:中文;
  • 页:HWYJ201906027
  • 页数:5
  • CN:06
  • ISSN:12-1261/TN
  • 分类号:332-336
摘要
设计了一种性能稳定、结构紧凑的光泵浦腔内倍频488 nm半导体薄片激光器。为获得光束质量好、输出性能稳定的488 nm激光器,利用808 nm LD从顶面垂直泵浦半导体增益介质芯片获得976 nm基频光,通过在腔内置入I类相位匹配的LBO晶体进行倍频获得488 nm激光输出。半导体增益介质芯片具有13量子阱和808 nm/976 nm双反射带反射镜,其双面键合金刚石散热片。在泵浦功率为9.2 W时,获得111 m W 488 nm激光输出,光谱线宽为1.3 nm,光-光效率为1.2%,光束质量Mx2、My2分别为1.03和1.02,连续工作3 h激光输出功率不稳定度为0.6%。
        A high stability and compact structure 488 nm light generated by intra-cavity frequency doubling in an optically pumped semiconductor disc laser was designed. In order to obtain a 488 nm laser with good beam quality and stable performance output, a semiconductor gain medium chip with 13 QWs and 808 nm/976 nm Double Band Mirror was pumped vertically by 808 nm LD on the top surface of the chip, and the chip with double diamond heat spreaders bonded on the both sides was introduced. 488 nm laser was generated by doubling frequency with I phase matched LBO crystals inserted in the cavity.111 mW 488 nm laser with 1.3 nm spectral line width was obtained, the optical to optical efficiency was1.2%, the beam quality of Mx2、My2 were 1.03 and 1.02 respectively, and the instability is less than 0.6%with continuously work for more than 3 h.
引文
[1] Tinguely Jean-Claude, Helle覫ystein Ivar, Ahluwalia Balpreet Singh. Silicon nitride waveguide platform for fluorescence microscopy of living cells[J]. Optics Express, 2017, 25(22):27678-27690.
    [2] Xie Shaoyu, Zhao Yiqiang, Wang Jinhua, et al. Laser fuze anti-surf based on two-wavelength detection[J]. Infrared and Laser Engineering, 2017, 46(4):0406005.(in Chinese)谢绍禹,赵毅强,王金花,等.双色探测激光引信抗海浪技术[J].红外与激光工程, 2017, 46(4):0406005.
    [3] Li Chungyi, Lu Haihan, Tsai Wenshing, et al. 6 Gb/s PAM4UWOC system based on 488 nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express,2017,25(10):11598-11605.
    [4] Duan Guoping, Chen Junling, Han Junhe, et al. Raman spectroscopic study of the crystallization of intrinsic amorphous silicon thin films with a 488 nm continuous-wave laser[J]. Acta Photonica Sinica, 2011, 40(11):1657-1661.(in Chinese)段国平,陈俊领,韩俊鹤,等. 488 nm连续激光晶化本征非晶硅薄膜的喇曼光谱研究[J].光子学报, 2011, 40(11):1657-1661.
    [5] Ahmad Y Nooraldeen, Dhinaa A N, Palanisamy P K.Nonlinear optical properties of acid orange 10 dye by Zscan technique using Ar+laser[J]. Journal of Nonlinear Optical Physics&Materials, 2007, 16(3):359-366.
    [6] Braune M, Maiwald M, Eppich B, et al. Design and realization of a miniaturized DFB Diode laser-based SHG light wource with a 2 nm tunable emission at 488 nm[J].IEEE Transactions on Components Packaging&Manufacturing Technology, 2017, 7(5):720-725.
    [7] Xu L, Liang S, Fu Q, et al. Highly efficient frequency doubling and quadrupling of a short-pulsed thulium fiber laser[J]. Applied Physics B, 2018, 124(4):59.
    [8] Wang Junguang, Li Yongliang, Tian Yinghua, et al. Allsolid-state continuous-wave all-intracavity sum-frequency mixing Blue laser at 488 nm[J]. Chinese Journal of Lasers,2010, 37(7):1669-1672.(in Chinese)王君光,李永亮,田迎华,等.全固态腔内和频488 nm连续蓝光激光器[J].中国激光, 2010, 37(7):1669-1672.
    [9] McInerney J G, Mooradian A, Lewis A, et al. High brightness 980 nm pump lasers based on the novalux extended cavity surface-emitting laser(NECSEL)concept[C]//SPIE,2003, 4947:240-251.
    [10] Vasily Ostroumov, Christoph Simon, Heiko Schwarze, et al.1 W 488 nm cw air cooled optically pumped semiconductor laser[C]//SPIE, 2008, 6871:687118.
    [11] Guina M, Rantam覿ki A, H覿rk覿nen A. Optically pumped VECSELs:review of technology and progress[J]. Journal of Physics D Applied Physics, 2017, 50(38):383001.
    [12] Vafapour Z, Khurgin J B. Bandgap engineering and prospects for radiation-balanced vertical-external-cavity surface-emitting semiconductor lasers[J]. Optics Express, 2018, 26(10):12985.
    [13] Kahle H, Nechay K, Penttinen J P, et al. AlGaAs-based vertical-external-cavity surface-emitting laser exceeding 4 W of direct emission power in the 740-790 nm spectral range[J]. Optics Letters, 2018, 43(7):1578.
    [14] Qin Li, He Chunfeng, Li Jun, et al. Optimized structure designing of OPS-VECSEL[J]. Infrared and Laser Engineering, 2007, 36(S):81-84.(in Chinese)秦莉,何春凤,李军,等.光泵浦垂直外腔面发射激光器的结构优化设计[J].红外与激光工程, 2007, 36(S):81-84.
    [15] Jun Ho Lee, Jun Youn Kim, Sang Moon Lee, et al. 9.1 W high-efficient continuous-wave end-pumped vertical-externalcavity surface-emitting semiconductor laser[J]. IEEE Photon Techn Lett, 2006, 18(20):2117-2119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700