神经网络NARX压电陶瓷执行器迟滞建模
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Neural NARX Model for Hysteresis in Piezoelectric Actuators
  • 作者:张新良 ; 贾丽杰 ; 付陈琳
  • 英文作者:ZHANG Xin-liang;JIA Li-jie;FU Chen-lin;School of Electrical Engineering and Automation, Henan Polytechnic University;Department of Information, Beijing University of Technology;
  • 关键词:压电陶瓷执行器 ; 动态迟滞 ; 神经网络 ; NARX ; 随机牛顿算法
  • 英文关键词:Piezoelectric actuators;;dynamic hysteresis;;neural networks;;NARX;;stochastic Newton approximation algorithm
  • 中文刊名:JZDF
  • 英文刊名:Control Engineering of China
  • 机构:河南理工大学电气工程与自动化学院;北京工业大学信息学部;
  • 出版日期:2019-05-20
  • 出版单位:控制工程
  • 年:2019
  • 期:v.26;No.173
  • 基金:教育部高校博士点基金-新教师类(20134116120003);; 国家自然科学基金(U1404612);; 河南省控制工程重点学科开放实验室基金(KG2016-15)
  • 语种:中文;
  • 页:JZDF201905002
  • 页数:6
  • CN:05
  • ISSN:21-1476/TP
  • 分类号:10-15
摘要
为了准确描述压电陶瓷执行器中存在的速率依赖性迟滞,给出了一种由迟滞环节和动态环节构成的串联块模型。迟滞环节的数学模型通过引入描述梯度变化的迟滞算子,将多值映射转化为扩展输入空间上的一一映射,使用前向神经网络来逼近。基于迟滞模型,引入线性动态模型描述压电陶瓷迟滞输出的速率依赖性,构造神经网络NARX(nonlinear autoregressive model with exogenous inputs)模型。进一步,给出了模型参数优化的递推随机牛顿算法。实验结果验证了所提出的模型和估计算法的有效性。
        To describe the rate-dependent hysteresis behavior of the piezoelectric actuators, a cascade block-based model is proposed in this paper, i.e., a rate-independent hysteresis block cascading with a rate-dependent block. For the approximation of the hysteresis block, a hysteresis operator is introduced into the input space to represent the changing tendency of the gradient with the hysteresis. Then a neural hysteresis sub-model is constructed based on a one-to-one mapping. Meanwhile, to describe the rate-dependent characteristics of the dynamic hysteresis, a NARX(nonlinear autoregressive model with exogenous inputs)model is adopted. And a recursive stochastic Newton approximation algorithm is derived for the optimization of the model. The validation results have shown the effectiveness of the proposed model for characterizing the dynamic hysteresis.
引文
[1]Do T,Tjahjowidodo T,Lau M,et al.Hysteresis Modeling and Position Control of Tendon-sheath Mechanism in Flexible Endoscopic Systems[J].Mechatronics,2014,24(1):12-22.
    [2]王贞艳,张臻,周克敏,等.压电作动器的动态迟滞建模与H_∞鲁棒控制[J].控制理论与应用,2014,31(1):35-41.Wang Z Y,Zhang Z,Zhou K M,et al.Dynamic Hysteresis Modeling and H-infinity Robust Control of Piezoelectric Actuators[J].Control Theory&Applications,2014,31(1):35-41.
    [3]Wang X,Pommier-Budinger V,Reysset A,et al.Simultaneous Compensation of Hysteresis and Creep in a Single Piezoelectric Actuator by Open-loop Control for Quasi-static Space Active Optics Applications[J].Control Engineering Practice,2014,33:48-62.
    [4]Xiao S,Li Y.Modeling and High Dynamic Compensating the Rate-dependent Hysteresis of Piezoelectric Actuators via a Novel Modified in Verse Preisach Model[J].IEEE Transactions on Control Systems Technology,2013,21(5):1549-1557.
    [5]Zhang J,Merced E,Sepúlveda N,et al.Optimal Compression of Generalized Prandtl-Ishlinskii Hysteresis Models[J].Automatica,2015,57:170-179.
    [6]Kuhnen K,Krejci P.Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems-A New Preisach Modeling Approach[J].IEEE Transactions on Automatic Control,2009,54(3):537-550.
    [7]孟爱华,祝甲明,刘成龙,等.基于改进PSO算法的GMA迟滞模型参数辨识[J].控制工程,2014,21(5):735-739.Meng A H,Zhu J M,Liu C L,et al.Parameter Identification of Hysteretsis Model for GMA Based on Improved PSO Algorithm[J].Control Engineering of China,2014,21(5):735-739.
    [8]Aljanaideh O,Habineza D,Rakotondrabe M,et al.Experimental Comparison of Rate-dependent Hysteresis Models in Characterizing and Compensating Hysteresis of Piezoelectric Tube Actuators[J].Physica B:Condensed Matter,2016,486:64-68.
    [9]Lien J,York A,Fang T,et al.Modeling Piezoelectric Actuators with Hysteretic Recurrent Neural Networks[J].Sensors and Actuators,A:Physical,2010,163(2):516-525.
    [10]N,Ahn K A Hysteresis Functional Link Artificial Neural Network for Identification and Model Predictive Control of SMA Actuator[J].Journal of Process Control,2012,22(4):766-777.
    [11]张新良,谭永红.基于输入空间扩张的动态迟滞神经网络模型[J].自动化学报,2009,35(3):319-323.Zhang X L,Tan Y H.Neural Network Model for the Dynamic Hysteresis based on the Expanded Input Space,Acta Automatica Sinica,2009,35(3):319-323.
    [12]赵新龙,谭永红,董建萍.基于扩展输入空间法的压电执行器迟滞特性动态建模[J].机械工程学报,2010,46(20):169-174.Zhao X L,Tan Y H,Dong J P.Dynamic Modeling of Rate-dependent Hysteresis in Piezoelectric Actuators Based on Expanded Input Space method[J].Journal of Mechanical Engineering,2010,46(20):169-174.
    [13]Gao X,Ren X,Zhu C,et al.Identification and Control for Hammerstein Systems with Hysteresis Non-linearity[J].IET Control Theory and Applications,2015,9(13):1935-1947.
    [14]Zhang X,Tan Y.A Hybrid Model for Rate-dependent Hysteresis in Piezoelectric Actuators,Sensors and Actuators A:Physical,January2010,157(1):54-60.
    [15]萧德云.系统辨识理论及应用[M].清华大学出版社,2015:190-194.Xiao D Y.Theory of System Identification with Applications[M].Tsinghua University Press,2015:190-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700